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ABSTRACT

A model of a bulk water system describing the vibrational motion of intramolecular and intermolecular modes is constructed, enabling analy-
sis of its linear and nonlinear vibrational spectra as well as the energy transfer processes between the vibrational modes. The model is described
as a system of four interacting anharmonic oscillators nonlinearly coupled to their respective heat baths. To perform a rigorous numerical
investigation of the non-Markovian and nonperturbative quantum dissipative dynamics of the model, we derive discretized hierarchical
equations of motion in mixed Liouville-Wigner space, with Lagrange-Hermite mesh discretization being employed in the Liouville space of
the intramolecular modes and Lagrange-Hermite mesh discretization and Hermite discretization in the Wigner space of the intermolecular
modes. One-dimensional infrared and Raman spectra and two-dimensional terahertz-infrared-visible and infrared-infrared—Raman spectra
are computed as demonstrations of the quantum dissipative description provided by our model.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135725

. INTRODUCTION

Water in the condensed phase is the mother of chemistry,
providing an environment that makes a variety of chemical and bio-
logical reaction processes possible.' ” One of the key challenges in
investigating the physical chemistry aspects of water is the study
of irreversible energy transfer processes arising from the high-
frequency intramolecular modes that promote bond formation and
bond breaking through complex hydrogen bonding"’ and the low-
frequency intermolecular modes that realize irreversible nuclear
motion.” " The interplay between these modes plays key roles in
chemical reaction processes.” Experimentally, such phenomena have
been investigated by infrared (IR)'”'" and third-order off-resonant
Raman spectroscopies.'”'” Because water exhibits great inhomo-
geneity, laser measurements based on linear responses, such as
one-dimensional (1D) IR and Raman spectroscopies, yield broad-
ened spectral peaks, as a consequence of which it is difficult to use

these measurements to investigate the underlying mechanisms of
complex molecular dynamics (MD).

Thus, ultrafast two-dimensional (2D) spectroscopies have been
proposed in which experiments are conducted by varying the time
intervals in laser pulse trains applied to the molecules.""”” By plot-
ting the nonlinear optical response as a function of the time intervals
between the laser pulses, it is possible to obtain detailed infor-
mation about the molecular dynamics in condensed phases.'*”’
However, analysis of these 2D signals is difficult because they arise
from complex motions described by nonlinear response functions
exhibiting complicated spectral profiles that are very sensitive to
the physical conditions and the setup of the experimental system.
Therefore, to enable this type of experiment to be conducted success-
fully, support from theoretical analysis based on a predictive model
is crucial.'”** Molecular dynamics (MD) simulations have proved
to be a powerful means for such spectral analysis, but only a few
approaches are able to cover the wide frequency range needed to
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analyze the role of energy relaxation between the intramolecular and
intermolecular interactions of water molecules.”” > In particular,
simulations of the intramolecular modes are difficult because their
motions have to be treated quantum mechanically.”” *° Because the
computational time required for 2D vibrational spectra is about
1000 times longer than that for linear spectra, full MD simulations
of 2D vibrational spectroscopies have been conducted mainly for
the intermolecular modes, where classical descriptions work reason-
ably well,”*>""~** although full quantum MD simulations for liquid
water have recently become possible.”” "’

As a practical approach, the Brownian oscillator (BO) model
has been employed for the analysis of both linear**** and non-
linear spectra.'”"’ In this approach, the vibrational modes repre-
senting the spectroscopic properties of interest are described as
functions of molecular coordinates, while the environmental molec-
ular motions are described using heat baths that exert thermal
fluctuations and dissipation on the vibrational modes. While anal-
ysis based on 2D spectroscopy has shown that vibrational relax-
ation and dephasing are important mechanisms for characteriz-
ing molecular motions, >”" the inclusion of linear-linear (LL) and
square-linear (SL) non-Markovian system-bath (SB) interactions is
significant,”’ in addition to anharmonic mode-mode interactions
(the LL+SL BO model).”””” Then, to obtain an accurate numer-
ical solution of the model in a nonperturbative regime, various
hierarchical equations of motion (HEOM) approaches have been
employed.”””’

The multimode LL+SL BO model was employed for the analy-
sis of classical MD results of 2D THz-Raman®® and 2D IR-Raman
spectra®® with the use of the classical hierarchical Fokker-Planck
equations (CHFPE), which are the classical limit of the quantum
hierarchical Fokker-Planck equations (QHFPE) in the Wigner space
representation.”” The 2D spectra obtained from the CHFPE accu-
rately reproduce the 2D profile of the classical MD results. It should
be noted that because the 2D spectral profiles are extremely sensi-
tive to the essential features of the intermolecular and intramolecular
motion, it is not possible to reproduce them satisfactorily without
capturing the key features of the molecular vibrational motion that
are necessary to reproduce the complex 2D profile from a simple
model. Such a BO model analysis of the 2D IR-Raman spectrum
predicted the presence of a cross peak representing the mode-mode
interactions between intramolecular OH stretching motion and
hydrogen-bonded (HB) intermolecular vibrational (translational)
motion,”® which was later observed experimentally.”**’

Although the classical MD results for 2D water spectra explain
the dynamical properties of water reasonably well, the intramolec-
ular motion of water inherently requires a quantum treatment,
especially to account for the peak splitting of stretching modes in
the 2D IR spectrum caused by the transition between the 0-1-0 and
0-1-2 vibrational levels.**

To aid in the construction of a reliable model, it would be help-
ful to have as a reference either experimental or theoretical results
for 2D spectra covering the entire vibrational spectral region. How-
ever, at present, no such results are available, and to overcome
this difficulty, we attempt here to extend the classically constructed
model’” to the quantum case and solve it accurately in the frame-
work of open quantum dynamics theory. It is not certain that our
extended model in its present form will be able to reproduce the
experimental spectra if they are obtained, but modifications of the
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model parameters or model interactions to take account experi-
mental and quantum simulation results of 2D spectra should be
straightforward. Once such a model has been successfully estab-
lished, it could be used as a convenient tool for analyzing the energy
relaxation process of water molecules, even in the quantum regime.
Moreover, the model itself could be used as a quantum heat bath
describing a complex water environment. Thus, the purpose of this
study is to provide a basis for further analysis of complex water
dynamics.

The remainder of this paper is organized as follows: In Sec. 11,
we present the model Hamiltonian and HEOM. We then intro-
duce the discretized HEOM in a mixed Liouville-Wigner space in
Sec. I11. Although there are four major modes of water, two modes
are sufficient for the calculation of a linear (1D) spectrum with a
combination band peak and a 2D spectrum for the detection of
anharmonic mode-mode coupling. Thus, in Sec. I'V, we present the
calculated results for 1D IR and 1D Raman, 2D THz-IR-Visible
(2D TIV), and 2D IR-IR-Raman (2D IIR) spectra based on two-
mode calculations. Section V is devoted to concluding remarks.
The computer codes for the DHEOM-MLWS used in the present
calculations are provided as supplementary material.

Il. MULTIMODE LL+SL BO MODEL AND HEOM

We consider a model that consists of four primary oscillator
modes of liquid water, representing (1) intramolecular OH stretch-
ing (“stretching”), (2) intramolecular HOH bending (“bending”), (3)
hydrogen-bonded (HB) intermolecular librational (“librational”),
and (4) HB intermolecular translational (“translational”) motions.
They are described by dimensionless vibrational coordinates
G=(...»qs...) with s=1,...,4 indexing the four vibrational
modes. Although the present model is constructed to simulate these
four modes simultaneously, the calculation of the 2D spectrum takes
about 1000 times longer than that of the 1D spectrum, and, in this
study, we limit our analysis to various combinations of two-mode
cases. The Hamiltonian of the sth mode is expressed as™”°

A2

HI(:) = Zpl’:’ls + Us(és): (1)

where m; and ps are the mass and momentum for the sth modes
with s = 1,...,4. The potential of the sth mode and the interaction
between the modes s and s” are denoted by Us(§s) and Uy (s, §s )
respectively. Each mode is independently coupled to the optically
inactive vibrational modes, which are regarded as a bath system. This
bath system is represented by an ensemble of harmonic oscillators.

9,52-56

The total Hamiltonian with counterterms is then expressed as”""

4
Htot = Z (H‘E{S) + Z Uss’(és;és’))

s=1 s>s’

A2 2
Pj, mjwj ., N Y.
+ == (X -V , 2
- [ijs 2 ( js — % s(‘h)) (2)

where the momentum, coordinate, mass, frequency, and coupling
strength of the j th oscillator for the sth bath are given by p;,, x;,, m;,,
wj,, and a;,, respectively.

The bath dynamics can be characterized by the spectral distri-
bution function (SDF), defined as Ji(w) = ¥, aﬁé(w - wj,)[2mswj,,
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and the inverse temperature = 1/kgT, where kg is Boltzmann’s
constant and T is the thermodynamic temperature. The ther-
mal properties of the bath are then characterized by the sym-
metrized correlation function (SCF) and the relaxation func-
tion (RF), expressed as Cs(t) = i [, dw Js(w) coth(Bhw/2) cos(wt)
and ¥(t) =2/, dwJ(w) cos(wt)/w, which are related by the
fluctuation-dissipation theorem.”

For the vibrational modes of water, the anharmonicity of the
potential and the mode-mode interactions are weak. Thus, we
assume the potential of the sth mode and the interaction between
the sth and s"th modes as

Us (qs) = msws qs

'gs3 qg ©)
and

N . 1 R JUA

Use (QS> q.c’) = 5 (gszs' qqu’ + &2 qsqsz’)’ (4)

respectively, where w; is the frequency of the sth mode, and gg,
gey» and gy represent the third-order anharmonicity. The dipole
operator and polarizability are defined as

f= Z psils + Y s Gsdls (5)

5,8’

and

I1= Z Hst + Z Hss’CIsq:’ (6)

5,8’

respectively, where y_and p/ are the linear and nonlinear elements,
respectively, of the dipole moment, and II; and IT are those of
the polarizability. Then, the vibrational modes interact through the
mechanical anharmonic coupling (MAHC) described by gey and
& and the electric anharmonic coupling (EAHC) described by .
and IT .

The system part of the SB interactions is denoted as V(gs),
which consists of linear-linear (LL) and square-linear (SL) SB
interactions as follows:

Vi(g) = V0 + Vé? i @)

34,59-61

with coupling strengths V£SL) and VESL).‘U“‘
In this study, we assume the SDF in the Drude form as

2
]S(w): ms(s Ysw i 8)

21 w? +y?

where (; is the SB coupling strength and y, represents the inverse
correlation time of the sth bath noise. We then have

Ks ©
Cot) = 3 e 1y e a8(h) 9)
k=0
and
W (t) = rés)e_ys‘[l, (10)

. . . 33,53,5 .
where vj = y; and cgs) is a renormalization factor.””*”" The vibra-

tional modes of the water are then described by the reduced den-
sity matrix elements in Liouville space, p(t) = p({qs, q3}st), with
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s=1,...,4. The HEOM in its Liouville-space expression for this
system is then given by "’

s=1 s>s

8 N 5,8 S N HS
apﬁ(t)?z(ﬁ(uzﬂ )+Z”() © ())pﬁ(t)

24:(2(1)(5 . ()(t)+Zn(S)®(S)p, ( (t)) 11)

ﬂ+E
=1

where £ = i(H) /n, £ = i0% b, &© = iV R,

(s) (s)

)= To ¥y icy " x
@ v, 12
h S+ p Vs (12)
@,ES) = clgs)d)(s), and
(s) (5)
'.f:(f) _ 66 AX A N
& VIV BSVIVE (13)

Here, we have introduced the superoperator notation O* p

=[O,p] and O°p={0,p} for any operator O. The vector
fis = (n(()s),nfs),..., 1(<)) consists of non-negative integers, and €
is the unit vector of the kth element. The zeroth element pg_ ()

= p({gs,qe}; t) corresponds to the original density element.

I1l. DISCRETIZED HEOM IN MIXED
LIOUVILLE-WIGNER SPACE

The density matrix in the present model is a function of
the eight-dimensional elements in coordinate space, and the above
HEOM cannot be solved easily using currently available computer
resources. To reduce computational costs, we discretize the HEOM,
taking into account the characteristics of the vibrational modes of
water.

Hereinafter, we distinguish the intramolecular modes and
the intermolecular modes by s=1 and 2, and §=3 and
4, respectively, and express the reduced density matrix as

p(t) = p({qs 935 {45 43}3 1)

A. Lagrange-Hermite mesh discretization
for intramolecular modes

In the simulation of high-frequency intramolecular modes
(hws > kT with s =1 and 2), the quantum nature of the system,
which is commonly descrlbed in terms of energy eigenstates, plays
an important role.””**" However, to accurately treat the highly
excited vibrational states, which are only slightly populated, we have
to deal with many low-temperature correction terms (LTCTs) in the
HEOM formalism.

We then find that by using the coordinate-space representa-
tion, we do not have to treat the excited states with low population
explicitly, and we can reduce the LTCT elements dramatically while
maintaining numerical accuracy. Hence, we describe the system
using the Liouville operator in coordinate space and then employ
the basis functions to discretize. All of the system operators are then
expressed in matrix form as the elements of the basis set. Basis func-
tion approaches such as the discrete variable representatlon (DVR)
method®" and the Lagrange mesh method (LMM)*°® have been
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used to discretize the wave function in coordinate space. While the
DVR method has been applied to the HEOM for the investigation
of the electron transfer problem of metallic surfaces,”” we found that
the Lagrange-Hermite mesh method (LHMM) is more efficient for
the description of high-frequency vibrational modes.

The LHMM is a variational method utilizing Gaussian
basis functions. The wave function is then described as y(gs;t)

- ZJI':]s“fs (t)F;,(gs), where

s~ s

; 1 HN, i 2

Fi(g) = (1) (o) /bq(;)p(fb) 1)
and N; is the total number of the basis set for the sth mode, Hy, (x)
is the N th Hermite polynomial, and hy, is the squared norm of
HN, (x), which is given by hn, = /m2M:N;!. We use the scaling factor
defined by b, = /hi/msws, where w; is the characteristic frequency of
the oscillator. The total number of mesh points in the LHMM is then
N x N.

The reduced density matrix elements for intramolecular modes
are now expressed in terms of the discretized Liouville space
elements as

p({4s9:}s {as- 4 }56) = p({a5 4 }s O T 1 oo sn () Fi (as) Fi (q0),

(15)
where pg; in () = o, (t)aj; (t). The superoperators of the system in
Liouville space for the sth mode, X(g;), as functions of g, are
expressed as

X% (g )p(t) » X p(0), (16)
where
Xj = [X(q;) - X(q;,)10: (17)
and
= [X(q;) +X(q;,)]0:. (18)

Here, we define j; = [i/N;] and j, = 1 + (N; — 1) mod i. The super-
operator for the commutator of the squared momentum operator
(psz)>< can also be expressed as

(62)"p(t) = p2"p (1), (19)
where

2% k=K' 2 1 2
=1 (-1 ——(1-0kp )+ =(2N; + 1 - O |81 1
[P; ],] [( ) @ _qk/)z( kk') 3( i) Ok |01

2
(a1-qr)?

+ %(2NS +1- q,z)su,]. (20)

- 5k,k,[(—1)"" (1-8,)

Here, we define k = [i/N,], =1+ (N; - 1) mod i, k' = [j/N,], and
I'=1+(N;-1) modj.
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B. Lagrange-Hermite mesh discretization
and Hermite discretization for intermolecular modes

In general, the equations of motion for the density operator in
Liouville space expressed as p(gs, q¢ ) are simple, since the Liouvillian
is a local operator in coordinate space. Nevertheless, a phase-space
(p-q space)-like description, such as the Wigner representation,
has advantages, in particular for the investigation of intermolecu-
lar modes (5 = 3 and 4), because such a distribution is a real function
and is localized more or less centered at p; = 0 and g = 0 for a system
with weak anharmonicity, and this allows better usage of computer
memory. Moreover, for low-frequency vibrational modes, the heat
baths are considered to be at a high temperature, and a semiclassical
treatment can be justified. Conversely, the density matrix element of
{4s»q3} is a complex and nonlocalized function.

Thus, we introduce the Wigner distribution function (WDE),
defined as

drsdry _icpsrs4pr, T3 rs
Pllpna) = [ Googee @ o({a+ Sa- )

2

for § = 3 and 4, while we fix the elements of s = 1 and 2.

For the expression of system operators in Wigner space, we
employ the star operator x, which represents the Moyal product
defined as

*Eexp[if,(a 9 -0 0 )] (22)
=3

1\<qs 2ps  —qs <ps

where we have introduced the differentiation operations from the
left and right, which are defined by

9 10 = S99 = L. 23)

In this expression, the commutator and anticommutator are then
replaced by O *p — O » p — p * O for any operator O in the Wigner
representation.

The quantum Liouvillian in the Wigner representation is, for
example, expressed as

5 s ps 5 .

$=34 §5=3,4 M5

E[U34(q3>q4)*P p* Usa(gs,q4)]. (24)

Us(qs) *p—p* Us(gs)]

For the LL+SL SB interaction, the relaxation operators in the Wigner
representation for the HEOM have been evaluated and presented in
Refs. 59-61 and 68.

Note that, as can be seen from Eq. (22), higher-order terms
can be omitted when the wavepackets in momentum space are
nearly Gaussian or the anharmonicity of the potential is weak.
Moreover, in the case of the low-frequency intramolecular modes
(hws < kpT with 5 = 3 and 4), the quantum effects of the system and
the bath are minor, and a semiclassical or even classical description
of the system is reasonably accurate. Thus, here we omit higher-
order Kramers—-Moyal expansion terms and employ the classical
Liouvillian expressed as
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. . 9
E(S)—+£(34)—: ps =
i=34 AP 1P Sl aqsp
OUs(gs) 3U34(q3,q4) ]
. (25
( 8% a% 8psp (25)

The intramolecular and intermolecular anharmonic couplings are
expressed as

190%(4s,q5) O
(45 9) 92,

PR PR (26)

£ = 5 LU (g )p +

In terms of the Lagrange-Hermite functions and Hermite
functions, the WDF can be discretized as®

pllana) = I3 00w (s a0 ™ 7],
27
where
(CYPRUINS SUN T 02 W By -3
Vi (ps) = \/2ks kg!ag\/ﬁHk‘(us)eXp( 2a§) (28)

and

s 2
FOa) = ()7 (2hw,) b 'ZN(*’)exp(— 9s ) (29)

Here, K; and N; are the total numbers of basis functions for momen-
tum and coordinate spaces, respectively. The function Hi(x) is the
kth Hermite polynomial, and hy is the squared norm of Hy(x),

which is given by hy = vV72NN!. We use scaling factors defined as
as = \/2ms/f and bs = 1//Pmsw? for momentum and coordinate

spaces, respectively.

Then, any function of g; for the sth mode Z¢)(g:) can be
expressed as

Z9(g)p(t) - 2Op(1), (30)

where

Zl(ssj)s Z(Q]&)éwy (31)

Hereinafter, we denote the tensor expression for the first derivative
of a function Z(gs) with respect to gz as

0Z(qs)

— 94.2. 32
aqg 9gq; (32)

The first derivative 9/0qs can be expressed as

0 . )=
*8(1;/?(0 D p(1), (33)
where
p® = (-1yp ! B T AL C ) e
15]5 ( ) (q q];)( s]s) 555 2 8!]5 _—
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Here, we introduce the creation and annihilation operators bs
and b;r , which acton p kit to decrease and increase the number of
ks as follows:

{k Jit \/_p{k —Ljs}
b; {ks s} — /k§ + 1P{k +1]s}'

With these operators, we can express the momentum operator as

ms (5 -
DPs = 4 /F(bg+b;r) (36)
o~/ L,
h s (37)

d —— ﬁi,_ﬁ

“<Pps ms

(35)

and

The LHM discretization and Hermite discretization are effi-
cient because the WDF is localized in g, and p_ space for a system
at high temperature (semiclassical) or in an overdamped condition,
while the SB interaction operator V) (g;) is still in diagonal form
as VJESJ? ~ VO (q i )0j,7- Moreover, in general, the LMM is numeri-
cally stable in comparison with the finite-difference method.®® Such
features allow us to dramatically reduce the computational time
required to integrate the HEOM, in particular as the size of a sys-
tem increases. Note that for an unbounded system and a rotationally
invariant system, a Lagrange-Fourier mesh method’’ and a discrete
Wigner function method’" are respectively more efficient.

C. DHEOM-MLWS

The elements of the discretized reduced density matrix are now
expressed as p} ‘J‘],’} (t) =pgjn(t)p {koid (t). The reduced density

operator is then expressed in tensor form as
= ksjssk
p(r) = {1}, (38)

The discretized HEOM is then expressed as

%pﬁ(t) __ (Lintra n Linter " Z LI(S,g)

intra-inter

. i[zn(s) ©, ”(5)])%(0

§:

\I
—

|
M I

(Z®“)pn+e<>(t> LS n9ep ,()(t))
k=0

s=1 k=0
NS ©)p © () gy )
-2l <>(t)+2”5 S O7p ¢<s>(t)
5=3 \ k=0 k=0
+ HSS)T(S)AfE)Pﬁ_EO(S) (t)
2O 1) oy
S o) : ) 9270 a0 (D) ] (39)
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where
int if(p i
L= | 2+ US| |+ UL, 40
sl,2h|:(2m5 S):| h . ( )
. 1 S -
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Here, Y ira_inter denotes summation with respect to coupling

between intramolecular and intermolecular mode, and, to keep the
notation simple, the unit matrix is not denoted. The expressions for
other auxiliary operators are presented in Appendix A.

IV. NUMERICAL DEMONSTRATIONS

We now report the results of our numerical computations of
the DHEOM-MLWS. We employed the parameter values of the
multimode LL+SL BO model chosen to reproduce 2D IR-Raman
spectra obtained from classical MD simulations®® with the use of
the POLI2VS force fields,” which possess the essential capability of
simulating both IR and Raman spectra. We then modified the anhar-
monicity and bath parameters of the intramolecular modes to fit an
experimentally obtained IR spectrum'! and Raman spectra'>"’ that
are consistent with the 1D spectra obtained from quantum MD sim-
ulations with the POLI2VS force fields.”* That is, the anharmonicity
of the intramolecular modes was modified by factors of 10 and 5 for
the OH stretching mode (s = 1) and HOH bending mode (s = 2),
respectively, while the bath coupling strength and inverse noise cor-
relation time ({,y,) were modified by factors of (1.5, 2) for s = 1
and (0.7, 1.1) for s = 2 from the classical values presented in Ref. 56.
Moreover, we enhanced the optical properties jisy and Iy for the
1-4 and 2-3 mode-mode couplings by factors of 2 and about 100,
respectively, to reproduce their overtone peaks. The anharmonic-
ity of the potential and the mode-mode coupling strength are listed
in Tables I and II. Here, we employ the normalized parameters to
compare the effect of anharmonicity with respect to the potential
for each mode and mode-mode coupling. The bath temperature
was set to T = 300 K (Bhw, ~ 19.2), with a fundamental frequency
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TABLE Il Parameter values of multimode LL+SL BO model for anharmonic
mode-mode coupling and optical properties among (1) stretching, (2) bending, (3)
librational, and (4) translational modes. The normalized parameters are defined as
Iy = (“’8/“’%“’;)932511 Oe2 = (wg/wswﬁ,)gss,z, fsst = (w%/wswg)yssf, and
Il = (wg/wsw;)nssz.

S—S, gszs/ gssrz ﬂssr fISSr
1-2 0 0.2 2.0x107° 2.6x 1073
1-3 -39x1072 -3.9x1072 0.13 0.19
1-4 ~75x% 1072 -75x 1072 0.43 0.46
2-3 ~1.5% 1072 ~1.5x 1072 7.0 4.0
2-4 —2.0x 1072 —2.0x1072 3.1 x 1072 3.1x 1072
3-4 0.23 0.23 7.8 x 1072 0.16

wo = 4000 cm ™!, which was chosen as a frequency close to the OH
stretching mode.

The numerical calculations carried out to integrate
Egs. (39)-(42) were performed using the fourth-order low-storage
Runge-Kutta (LSRK4) method.”””” A truncated Padé spectral
decomposition (PSD) presented in Appendix B was employed to
obtain the expansion coefficients of the noise correlation functions.
To conduct numerical integrations, the hierarchy was truncated to

satisfy the condition Az/yz < 8i1,”” where Ay is the tolerance of the
truncation, with y; = Zst;O n}gs) and

o1 (1)

=1 K (n,ES)!)O'O5

P

By adjusting the number of basis functions, we can calculate
various physical quantities with any desired accuracy. The num-
ber of basis functions used in the calculation in the Liouville space
[Fj(Q) in Eq. (14)] for both (1) stretching and (2) bending modes
were N3 = 7, and those in the Wigner space [f;j(Q) and v, (p) in
Egs. (28) and (29)] for (3) stretching and (4) librational modes were
(3)Ny_3=24and Ky_; =12and (4) Ny_, =24 and K,_, = 8.

We calculated 1D IR and 1D Raman spectra, and 2D
THz-IR-Visible (2D TIV) and 2D IR-IR-Raman (2D IIR) spectra,
defined by the first- and second-order response functions expressed
in terms of the two-body and three-body correlation functions
of optical observables, respectively, according to the procedure
explained in Appendix C. To efficiently obtain a 2D spectral profile

TABLE |. Parameter values of the multimode LL+SL BO model for (1) stretching, (2) bending, (3) librational, and (4) translational modes. Here, we set the fundamental
frequency as wy = 4000 cm~". The normalized parameters are defined as (s = (wg/ws)2(s, VES) = (ws/wp)V®, V) = Véf), G = (ws/wp)3ggs, fis = (wo/ws)s,

fiss = (wg/ws)zyss, I1s = (wp/ws)TTs, and ITgs = (wo/ws)zﬂss.

L L sL —

s ws (em™) v,/ wo ¢ Vﬁ) \7592) g s fss I, I

1 3520 5.0x 107 9 0 1.0 -5.0x 107! 33 1.2x1072 33 2.5% 1072
2 1710 2x1072 0.8 0 1.0 -7x107" 1.8 0 0.47 -39x1072
3 390 8.5 x 1072 8.3 3.4 %1073 1.0 7x107° 21 0 2.1 -0.83

4 125 0.5 2.8 28x107° 1.0 9.7 x 1072 26 2.1 9.0 2.3
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utilizing a small number of data points, we employed the estimation
of signal parameters via rotational invariance techniques (ESPRIT)
described in Appendix D.

The computation time with a multithreaded Fortran code of
DHEOM-MLWS using a personal computer widely available today
was ~2 h for the 2D TIV spectrum.

A. Linear response: 1D IR and 1D Raman spectra

In Figs. 1(a) and 1(b), we present the calculated 1D IR and
1D Raman spectra, respectively, from CHFPE and DHEOM-MLWS
using the same parameter values of the present model. We obtained
these spectra by combining the results from a single-mode model
with s =1 and 2 and § = 3 and 4 and those from a two-mode model
with the bending mode (s = 2) and librational mode (5 = 3) because
the calculations for four modes are computationally expensive and
because the effects of mode-mode coupling are important only for
the combination band among s = 2 and § = 4.

In both the IR and Raman cases, the classical and quantum
results agree for the low-frequency intermolecular modes. How-
ever, for the high-frequency intramolecular modes, the stretching
and bending peaks in the classical case are blue-shifted owing to
the quantum effects arising from the anharmonicity. Our DHEOM-
MLWS results reproduce the weak bending-librational combination
band at 2130 cm™" accurately, while the classical MD results® and
the classical BO results,”® including the present CHFPE results,
underestimate the peak position and peak intensity.

Note that the present LL+SL BO model was constructed based
on classical 2D IR-Raman simulations, but the force field used in the
simulation (POLI2VS) was developed for quantum MD simulations.
Because of this, although some modifications of the parameter val-
ues for the intramolecular modes are necessary, such an LL+SL BO
model can predict a reasonably accurate vibrational spectrum when
we conduct quantum HEOM calculations, as is also the case with
quantum MD calculations using the POLI2VS force fields.” This
indicates the possibility of constructing a quantum BO model from

1.0 T T
(a) IR spectrum
0.8} Experiment — —- //
CHFPE =~ —— !
0.6¢ DHEOM-MLWS —— II ‘\
0.4} N
0.2 N / \
g .o N N £ \
c
5 ‘ : ‘ ‘ : :
= 0.8 (b) Raman spectrum (parallel)
1 006 ‘
0.6 L
0.4 0.008 _ .~ ”
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0
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w (em™

FIG. 1. (a) 1D IR spectrum and (b) 1D parallel-polarized (VV) Raman spectrum
of water calculated using classical and quantum HEOM approaches. The blue
and red solid curves represent the classical CHFPE result and quantum DHEOM-
MLWS result, respectively. The intensity of each spectrum is normalized with
respect to the maximum peak intensity of the CHFPE results. The experimental
IR"" and Raman'* ' data are also presented as dashed curves for comparison.
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2D spectra obtained from first-principles classical MD simulations,
in which the nuclear motion of the molecules is classical.*”

B. Nonlinear response: 2D THz-IR-visible
and 2D IR-IR-Raman spectra

To elucidate how the effect of quantum dissipative dynam-
ics is manifested in mode-mode coupling peaks, we next present
numerical results for the 2D THz-IR-visible (2D TIV) spectrum”®”’
and the 2D IR-IR-Raman (2D IIR) spectrum (the observable part
of the 2D TIV spectrum is equivalent to part of the 2D IIR spec-
trum presented in Ref. 56). Note that in the 2D TIV and 2D IIR
spectra expressed in terms of the three-body correlation functions
of optical observables, the nondiagonal spectral peaks are not nec-
essary to represent mode-mode coupling peaks as in the case of
the third-order 2D IR spectrum expressed in terms of the four-
body correlation functions of the dipole moment'” ' because the
signal from the EAHC appears at a similar location to that from
the MAHC.”"

Such 2D experiments have been conducted " on the basis of
classical MD simulations,”® but the results are not in good agree-
ment with the theoretical predictions, partly because of the classical
description of the system. Hence, here we calculate and compare
the 2D spectra for the classical and quantum cases using the same
BO model, although the difference from the MD results may also
be due to the limitation of the MD description. Note that although
here we consider the 2D TIV and 2D IIR cases, 2D spectra computed
from different pulse configurations, such as 2D IR-Raman-IR and
2D Raman-IR-IR spectra, exhibit similar profiles because the differ-
ence between the IR and Raman spectra determined from the EAHC
is minor in our calculations based on the BO model.

In Figs. 2(a) and 2(b), we compare 2D TIV results under the
same conditions, calculated for the quantum (DHEOM-MLWS)
and classical (CHFPE) cases, respectively. Characteristic features
of anharmonicity and nonlinear polarizability on such 2D spec-
tral profiles in a single-mode case and a two-mode case described
by the BO model were elucidated in Ref. 56. From that anal-
ysis, the negative peak [at (w1, w;) = (150 cm™',3700 cm™) in
the quantum case] arises only from the MAHC between the
stretching-translational modes, whereas the positive peak [around
(w1, ) = (150 cm™, 3400 cm™") in the quantum case] arises from
contributions from the MAHC and EAHC. This can be easily con-
firmed by comparing the same calculation without the nonlinear
polarizability (IL,¢ = 0). Figure 3 reveals a negative peak and a pos-
itive peak whose node lines are centered at the resonant frequency,
whereas we observe only a positive peak at the resonant frequency
in the pure EAHC case (see Ref. 56). As this fictitious model analysis
has demonstrated, we can easily identify the key dynamics of a liq-
uid water system that determine the 2D spectral profiles obtained
from experiments and complex MD simulations. This is because,
to reproduce a complex 2D spectral profile accurately from a sim-
ple model, the model must capture the dynamical properties of the
system correctly.””">*

Compared with previous classical MD and BO model calcu-
lations, in the present calculation we observe peaks near (w1, ;)
=(0 cm™Y, 3700 cmfl) and (w1, w2) = (0 cm ™Y, 3400 cmfl) in both
the classical and quantum cases. Such peaks arise for a vibra-
tional system strongly coupled to an Ohmic bath, as has been

26,27
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(a) 2D-TIV (quantum) (b) 2D-TIV (classical)
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FIG. 2. 2D TIV spectra for the stretching—translational (1-4) modes calculated (a) with DHEOM-MLW and (b) with CHFPE. The spectral intensities are normalized with
respect to the absolute values of the spectral peak intensities of the classical result.

demonstrated from the analytical expressions for 1D and 2D
spectra.’””” Although the BO model that we have employed here
is similar to that used to analyze classical MD results, such low-
frequency peaks could not be observed in the previous studies
because their MD simulation period in the f; direction was too
short.”

We next demonstrate the description of the stretching-bending
(1-2) modes. In Fig. 4, we depict the 2D IIR spectrum for the
1-2 modes. In this figure, there are both positive and negative
peaks in the stretching, bending, and their cross-peak positions,
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FIG. 3. 2D TIV spectrum for the stretching-translational (1-4) modes without
the contribution from nonlinear polarizability, calculated with DHEOM-MLWS. The
spectral intensities are normalized with respect to the absolute values of the peak
intensities obtained from the classical simulation.

indicating that these arise from the MAHC. This is because the
EAHC contribution in the 1-2 modes is small, as indicated in
Table 1I. Here we observe the bending peak around (wi,w:)
= (1600 cm™, 1600 cm™"), but this peak overlaps with the bending-
librational EHAC peak, as shown below, and cannot be identified.
In Fig. 5, we depict the 2D IIR spectrum calculated for the
bending-librational (2-3) modes. As in the previous 1-4 case,
because we perform an accurate quantum mechanical evaluation
of the bending mode, the 2-3 coupling peaks around (w,w;)
= (600 cm™, 1600 cm™) and (w1, w2) = (1600 cm ™", 600 cm™) are
blue-shifted in comparison with the classical results.”® The peak

4000 y y y 1
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1500 |- ¥ -
1 1 1 1 A

000 B
1000 1500 2000 2500 3000 3500 4000
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FIG. 4. 2D IR spectrum for the stretching-bending (1-2) modes obtained from
DHEOM-MLWS. The spectral intensities are normalized with respect to the
absolute values of the spectral peak intensities.
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FIG. 5. 2D IIR spectrum for the bending-librational (2-3) modes obtained from
DHEOM-MLWS. The spectral intensities are normalized with respect to the
absolute values of the spectral peak intensities.

intensities of the 2-3 coupling peaks are much larger than the pre-
vious result™® because we enhanced the MAHC to reproduce the 2-3
combination band in the 1D IR spectra. The peaks that appear posi-
tively and negatively around w; = 1600 cm™" across w; = 1600 cm™
are caused by the EAHC of the 2-3 modes. Because we set II»3 to
a much larger value than in the classical case,’® the bending peak
displayed in Fig. 4 is completely covered by these EAHC peaks.

V. CONCLUSION

We have developed a model to analyze 1D and 2D vibra-
tional spectra for both intramolecular and intermolecular vibra-
tional modes involving all of their mode-mode interactions, taking
into account the effects of energy relaxation and vibrational dephas-
ing. To compute 2D signals from the model system, it is important
to adopt a quantum-mechanically consistent treatment of the sys-
tem and bath, in particular for the intramolecular modes, because
the quantum entanglement between the system and bath plays an
essential role. Thus, we adapted the HEOM formalism here, enabling
us to perform rigorous numerical calculations of linear and non-
linear spectra. Because integrating the HEOM for a multimode
system is computationally expensive, we developed the DHEOM-
MLWS approach to maintain the accuracy of the numerical
calculation.

The description of the multimode LL+SL BO model with the
use of the DHEOM-MLWS was investigated by calculating 1D and
2D spectra. From calculations of linear and nonlinear spectra, we
obtained accurate predictions of the positions of the frequency
stretching and bending peaks for which the classical results are
red-shifted.

The parameter values of our model were first chosen by solv-
ing the classical HEOM to fit the classical MD results for 1D and
2D spectra,”® with the anharmonicity of the potentials being modi-
fied using the experimentally obtained 1D spectrum. We found that
by using the POLI2VS force field in classical MD simulations, we
could obtain a reasonable parameter value set for quantum HEOM
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simulation. This is because the POLI2VS force field was developed
for quantum MD simulations,” and the complexity of molecular
interactions, which is important in describing water spectra, is not
directly related to the issue of quantum effects. This also indicates
that, even using first-principles MD results®” in which the nuclear
motion of the molecules is classical, we may construct a quantum SB
model that includes complex anharmonic and bath interactions.

To reproduce a 2D spectral profile, the model must capture
the dynamical properties of the vibrational motions correctly. Tak-
ing advantage of the low computational cost and simplicity of the
model, we can easily examine, for example, the effects of higher-
order anharmonicity on 2D spectra. The ability of the quantum
mechanical model to calculate 2D spectra provides the possibil-
ity of directly analyzing experimentally obtained spectra. Once the
model has been fully established, we can use it to investigate energy
and excitation transfer processes in liquid water. Moreover, we can
employ the LL+SL BO model as a heat bath to study the spectra and
energy relaxation of liquids containing ions.

Extensions of the present model, for example, to describe sym-
metric and antisymmetric OH stretching modes separately and to
employ the SDF to include the effects of optically inactive modes,
are also possible.”® The present model with the HEOM approach
provides a platform for analyzing novel experimental and simula-
tion results. We leave such extensions to future studies, depending
on progress in experimental and simulation techniques.

SUPPLEMENTARY MATERIAL

See the supplementary material for the computer codes for the
DHEOM-MLWS used in the present calculations.

ACKNOWLEDGMENTS

The authors are grateful to Shinji Saito and Keisuke Tomi-
naga for helpful discussions. Y.T. was supported by JSPS KAKENHI
(Grant No. B21H01884). H.T. is supported by JST SPRING (Grant
No. JPMJSP2110).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Hideaki Takahashi: Data curation (lead); Investigation (equal);
Software (lead); Validation (equal); Writing — original draft (lead).
Yoshitaka Tanimura: Conceptualization (lead); Funding acqui-
sition (lead); Investigation (equal); Project administration (lead);
Supervision (lead); Validation (equal); Writing — review & editing
(lead).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

J. Chem. Phys. 158, 044115 (2023); doi: 10.1063/5.0135725
© Author(s) 2023

158, 044115-9


https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0135725

The Journal
of Chemical Physics

APPENDIX A: AUXILIARY OPERATORS
IN DHEOM-MLWS

In this appendix, we present the explicit form of the auxiliary
operators in the DHEOM-MLWS. For intramolecular modes s = 1
and 2, these are given by

(s) (s)

20 = S T
= hZVV+ﬁSV, (A1)
0@ = Ly, (A2)
h
and
() ()
o Ys Ve zc0 st (k _ 0),
oy = %P‘; h (A3)
#st (k>0).

For intermolecular modes s = 3 and 4, we have

g = cﬁaq Ve, (A4)
o® =\ £, vib, (A5)
ms E
2478
(O N R S ¢ U A2 S 4 O T
AY = ﬁmgaqgvs(bs+b§)+ i ‘lng b, (A6)

R hZ s B
L TR (A7)
s

In the classical limit 7 — 0, Eqs. (A4)-(A7) reduce to 20 =,

ﬁ 15} V: (AS)

M s

o

APPENDIX B: TRUNCATED PADE SPECTRAL
DECOMPOSITION

o) =
® _

b + b* (A9)

and Af) =0

When quantum effects described by an SB model become
important, we have to take into account many LTCTs involved in
the HEOM formalism, which makes the integration of the HEOM
computationally very expensive. Thus, to reduce the number of
LTCTs, a Padé spectral decomposition (PSD) scheme has been
developed.”” We can further reduce the number of hierarchical
elements by incorporating into the PSD the balanced truncation
method (BTM), which was originally developed as a model order
reduction (MOR).”® Here, we adapt the algorithm developed in

ARTICLE

scitation.org/journalljcp

0.9998

0.9996
C
S
5 0.9994 ———
>
Q.
g
PSD3 — —
0.9992 PSD4 — — 1
PS D6(converged)
TPSD3(7,10)
TPSD4(7,107) ——
0.999 5

t(ps)

FIG. 6. Time evolution of the ground-state population of the OH stretching mode
calculated using HEOM with PSD and TPSD in the energy-eigenstate repre-
sentation. Here, PSDn (dashed curves) represents the PSD with n poles, and
TPSDn(M, €) (solid curves) represents the TPSD with n poles utilizing the
balanced truncation for PSDM with tolerance e.

Ref. 79 for the LTCTs and demonstrate the efficiency of the
truncated PSD (TPSD) method.
For a desired accuracy e > 0, we consider the condition

[Cpsp(t) — Cresp(t)] <6, (B1)

where Cpsp (t) is the SCF described by PSD, and Crpsp (t) is the SCF
described by PSD with BTM.

In Fig. 6 we depict the time evolution of the ground-state popu-
lation of the OH stretching mode (s = 1) described using the LL+SL
BO model with parameter values as listed in Table I. We then employ
the energy-eigenstate representation and integrate the HEOM with
the PSD and with the TPSD. As depicted in Fig. 6, the results calcu-
lated with TPSD converge faster than those without TPSD, while the
number of hierarchical terms is fewer in the case without PSD. The
improvement becomes significant for a system strongly coupled to
a heat bath at low temperatures. This approach is particularly bene-
ficial when dealing with multiple heat baths. Note that this method
can also be combined with the NZ2 truncation method.*

APPENDIX C: LINEAR AND NONLINEAR SPECTRA

Because the HEOM formalism is able to take accurate account
of the quantum entanglement between system and bath, it is possible
to calculate linear and nonlinear response functions. To compute a
nonlinear spectrum in the HEOM approach, we express the response
functions in terms of the time-propagation operator. For example, a
1D spectrum defined by first-order response functions is expressed
in terms of the two-body correlation function as

RO (1) = %tr{AQ(t)AX[)eq}, (C1)

where we have employed the hyperoperator * defined as A*p
[A p] for the Liouville space representation and Ap=AxWw

— W+ A for the Wigner space representation, G(t) is the Green’s
function of the system Hamiltonian without a laser interaction, and
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fq is the equilibrium state. For 1D IR or 1D Raman calculations, we
chose A = ji or A = 1 given in Egs. (5) or (6).

Accordingly, the 2D spectrum defined by the second- and
third-order response functions is expressed in terms of the three-
and four-body correlation functions of optical observables as
follows: '

i\ 2
R (ty,11) = (%) r{AG(1)B"G(0)C™p} (€2)
and
i\3
RO (5, 10, 11) = (%) tr{AG(t:)B*G(:)C*G(1)D*p},  (C3)

where the operators A, B, C, and D are either the dipole moment fi
or the polarizability IT.

The above equations represent the time evolution of the sys-
tem under laser excitation. For example, Eq. (C2) can be interpreted
as follows. The system is initially in the equilibrium state p° and is
then modified as a result of the first laser pulse via the dipole inter-
action by C. It then propagates for time ¢; under G(,). The system
is next excited through the second laser pulse by B and propagates
for time #, under G(t,). Finally, the expectation value of the polar-
izability at #; + t, is generated through the laser pulses by A"
The 2D THz-IR-visible signal can be computed from R(TZI)V(tz, )
in Eq. (C2) with A=TI and B=C=j, and the 2D IR response
R(If{)(t% t,11) can be evaluated from Eq. (C3) with A=B=C=D
= [1, respectively.

From the second- and third-order response functions, the 2D
TIV and 2D IR spectra, for example, are evaluated as

ITIv(wl,wz)OC/ dtlf dtzR(TZI)V(tz,tl)sin(wltl)sin(wztz)
0 0

(C4)
and

IS{)(‘UI’Q)‘US) ‘Xf dtlf dtsR(If,\)(ts,tz,tl)sin(wltl)sin(w3t3).

0 0 (CS)

This 2D sine-Fourier representation is more intuitive than the

real part of the 2D-Fourier representation, since it can extract only
absorptive components.

APPENDIX D: ESTIMATION OF SIGNAL PARAMETERS
VIA ROTATIONAL INVARIANCE TECHNIQUES

Calculating 2D spectra is computationally expensive because
we have to repeat the dynamics calculations for different t; and
t, or t1, b, and t3. Estimation of signal parameters via rotational
invariance techniques (ESPRIT) leads to a dramatic reduction in the
computational cost because it allows us to find an optimally explored
solution of a targeting signal as a linear combination of complex
exponentials.

Through the use of ESPRIT, the second-order response func-
tion as a function of #; is, for example, expressed as

N
R(t1, 1) = Zai(tz)e_bf(’z)h, (D1)
i=1

where a;(t2) and b;(t2) are complex functions of #, that are cho-
sen to optimize R(t1,t,). Although the real part of b;(t,) must be
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positive to avoid divergence in the #; direction, we can eliminate
this limitation with the use of a Fourier-Laplace transform. The 2D
Fourier transform of Eq. (D1) is then expressed as

R(w1,w;) = gF[mlat—(thz)]’ .

where F represents the discrete Fourier transform (DFT) on t,.

Using ESPRIT, we obtained the 2D IIR spectra for the
stretching-bending modes shown in Fig. 4. While conventional cal-
culations require 192 sample points in the ¢; direction, we can reduce
the necessary calculations four times (48 sampling points) with the
use of ESPRIT, giving almost identical results.

Note that while Prony’s method has been incorporated into
the HEOM formalism to eliminate instabilities arising from the
discrete-bath HEOM® and to apply the time-domain Prony fitting
decomposition (t-PFD) scheme as an efficient description of SDF,*
the same method can also be used to efficiently evaluate a 2D spec-
tral profile. However, we have found ESPRIT to be more convenient
and stable, in particular when the signal is mixed with noise.
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