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ABSTRACT
We formulate a thermodynamic theory applicable to both classical and quantum systems. These systems are depicted as thermodynamic
system–bath models capable of handling isothermal, isentropic, thermostatic, and entropic processes. Our approach is based on the use of a
dimensionless thermodynamic potential expressed as a function of the intensive and extensive thermodynamic variables. Using the principles
of dimensionless minimum work and dimensionless maximum entropy derived from quasi-static changes of external perturbations and tem-
perature, we obtain the Massieu–Planck potentials as entropic potentials and the Helmholtz–Gibbs potentials as free energy. These potentials
can be interconverted through time-dependent Legendre transformations. Our results are verified numerically for an anharmonic Brownian
system described in phase space using the low-temperature quantum Fokker–Planck equations in the quantum case and the Kramers equation
in the classical case, both developed for the thermodynamic system–bath model. Thus, we clarify the conditions for thermodynamics to be
valid even for small systems described by Hamiltonians and establish a basis for extending thermodynamics to non-equilibrium conditions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0205771

I. INTRODUCTION

Exactly 200 years have passed since Carnot published his
work on the efficiency of heat engines.1 Thermodynamics describes
macroscopic thermal phenomena in equilibrium and quasi-static
processes, independently of the system dynamics. It is widely applied
and has shown great success in describing thermal phenomena
characterized by intensive and extensive thermodynamic properties.
Massieu2 and later Planck3 combined the total energy with temper-
ature and entropy to derive the entropic potentials.4 Subsequently,
free energy was introduced by Gibbs and Helmholtz, completing the
foundations of thermodynamics.5

Statistical mechanics, on the other hand, is a system-specific
theory that describes many-body phenomena in an equilibrium state
based on its microscopic statistical properties.6 It was initiated by
Boltzmann’s establishment of the equality S = kB ln W, where S is
the entropy, W is the number of possible microscopic states, and
kB is the Boltzmann constant, followed by the introduction of prob-
ability distribution functions in phase space by Gibbs and Einstein
and then by the 1922 definition of partition functions as quantum

discretized eigenstates.7 It has thus been a century since statistical
mechanics took its current form.

Attempts to find a relationship between thermodynamics and
statistical mechanics have been successful under limited conditions
for specific systems, especially quantum systems, which are the
subject of quantum thermodynamics.8–28 However, a fundamental
difference exists between the theoretical foundations of statistical
physics, which is based on a first-principles description of kinetic
systems from a microscopic perspective, and those of thermody-
namics, which relies on a phenomenological description of thermal
systems from a macroscopic viewpoint. For example, in quantum
mechanics, observables are defined as expectation values, whereas
in thermodynamics, they are described by macroscopic intensive
and extensive variables. Consequently, a systematic theory based on
a system–bath (SB) model that describes the relationship between
thermodynamic potentials characterized as intensive and extensive
variables has yet to be firmly established.

Recently, it has been shown that it is possible to evaluate the
free energy on the basis of an SB model from dynamically calcu-
lated work as W ≥ ΔG (i.e., the minimum work principle), where
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W is the work defined as being done from the outside to the sub-
system by time-dependent external fields under an isothermal time-
irreversible process and ΔG is the change in free energy. Thus, the
free energy is evaluated as ΔG =Wqst, with the system being driven
quasi-statically by external fields.26,29 Using this definition of ther-
modynamic potentials, the first and second laws of thermodynamics
have been verified under fully quantum conditions.30,31

Note that the free energy defined by the partition function is
ubiquitously referred to as the Helmholtz energy ΔF. However, in
the thermodynamic sense, the free energy as a function of the exter-
nal field, which is an intensive variable, should be called the “Gibbs
energy,” while the minimum work principle or the Kelvin–Planck
statement is typically expressed as W ≥ ΔF. Since both the free ener-
gies play an essential role in the present study, hereinafter we shall
use the term “Gibbs energy” to refer to what we have previously
called the Helmholtz energy with reference to both our own work
and that of others.

The SB model exhibits time-irreversible dynamics toward the
thermal equilibrium state of the total system owing to the infinite
bath degrees of freedom, while the total equilibrium state obeys a
microcanonical ensemble.32–37 The effect of a heat bath is described
by fluctuations and dissipation satisfying the fluctuation–dissipation
theorem, and the system reaches a thermal equilibrium state in
which the energy supplied by fluctuation and the energy lost by
dissipation are balanced.37–41 Note that in the theory of open quan-
tum dynamics, fluctuations are essentially non-Markovian noise
expressed in terms of Matsubara frequencies, even in the case of
an Ohmic spectral distribution. Therefore, it is important to adopt
a non-Markovian treatment of fluctuations to describe the correct
thermal equilibrium state in which the subsystem and bath are
entangled (“bathentanglement”).38,39 Moreover, to calculate ther-
modynamic variables, it is necessary to accurately evaluate the heat
Q(t), which is the energy change in the heat bath, from the Hamil-
tonian dynamics.27,28 In microscopic quantum systems, it is also
essential to include contributions from the SB interactions to main-
tain the first law of thermodynamics, which corresponds to the
energy conservation law for the total system.29–31

Although the SB interaction part of the internal energy and
heat, whether in quasi-static or non-equilibrium systems, is diffi-
cult to evaluate within the conventional framework of the open
quantum dynamics theory because the bath degrees of freedom
have been reduced, we can evaluate these quantities numerically by
appropriate treatment of bathentanglement, such as by using mul-
ticonfigurational time-dependent Hartree (MCTDH),42,43 polaron
transformation,44 and other approaches.45–52 Among these, the hier-
archical equations of motion (HEOM) formalism provides a stable
and versatile scheme for performing numerical simulations of a
wide range of problems,37–41,53–61 such as for spin-lattice systems,62

the Hornstein–Hubbard model,63 and vibrational modes of liquid
water.64,65

Although investigations of quantum thermodynamics have
progressed with the help of experimental advances,66–69 several
issues remain unclear. For example, extensive variables, such as
entropy and susceptibility, have been obtained from the free energy
since they satisfy Legendre transformations, but how are these
defined in the SB model? What is meant by the temperature
derivative of the free energy evaluated from the isothermal pro-
cess described by the SB model? Are the arguments discussed in the

theory of open quantum dynamics consistent with ordinary ther-
modynamics in the classical limit? The answers to these questions
should provide a basis for extending thermodynamics, defined by
quasi-static processes, to non-equilibrium processes.

In this paper, we develop a thermodynamic theory applica-
ble to classical and quantum systems, expressed as time-dependent
thermodynamic potentials as functions of extensive and intensive
variables, based on the Ullersma–Caldeira–Leggett (or Brown-
ian) model32–36 extended for thermodynamic studies. Our argu-
ment is based on the dimensionless minimum work principle,
which is expressed using the dimensionless (or entropic) work and
entropic potentials. The results are verified by numerical simulations
based on the low-temperature quantum Fokker–Planck equations
(LT-QFPE)57 and the Kramers equation in the classical limit.

The remainder of this paper is organized as follows: in Sec. II,
we introduce the SB Hamiltonian for thermodynamic processes.
We then define non-equilibrium enthalpy and internal energies. In
Sec. III, we introduce dimensionless thermodynamic variables, such
as dimensionless entropy and polarization. Then, in Sec. IV, we dis-
cuss the laws of thermodynamics within the framework of the open
quantum dynamics theory. Using the quasi-static values of work and
heat, we introduce the dimensionless minimum work principle and
maximum entropy principle. We then express the thermodynamic
potentials in terms of intensive and extensive variables in total differ-
ential form. In Sec. V, to verify our results in a numerically rigorous
manner, we introduce quantum and classical reduced equations
of motion for thermodynamic processes and perform simulations.
Finally, in Sec. VI, we present concluding remarks.

II. THERMODYNAMIC SYSTEM–BATH MODEL
A. Model Hamiltonian

We develop a thermodynamic theory applicable to classical
and quantum systems that can describe isothermal, isentropic, ther-
mostatic, and entropic processes. To achieve this, we extend the
Ullersma–Caldeira–Leggett model (or Brownian model),32–40,55–57

which consists of a subsystem A defined in phase space coupled
to a heat bath B. By using this model, instead of the spin–boson
model,45,53,54 we can obtain the classical results by taking h→ 0. The
total Hamiltonian is then expressed as

Ĥtot(t) = ĤA(t) + ĤI+B(t), (1)

where

ĤA(t) = Ĥ0
A + Ĥ′A(t), (2)

with

Ĥ0
A ≡

p̂ 2

2m
+U(q̂) (3)

being the Hamiltonian for the subsystem with mass m and potential
U(q̂) described by the momentum p̂ and position q̂, and

Ĥ′A(t) ≡ −E(t)μ(q̂) (4)

is the perturbation described as μ(q̂) as a function of the subsystem
coordinate and the external field E(t), which is a thermodynamic-
intensive variable.27,28 In a typical example, E(t) denotes the laser
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field and μ(q̂) the electric dipole moment. In laser spectroscopy,
the expectation value of the dipole is an extensive variable and is
observed as the polarization PA(t) = ⟨μ(q̂)⟩, where ⟨⋅ ⋅ ⋅⟩ denotes the
thermal average.37

Although the conventional SB model has been limited to the
investigation of isothermal processes at a constant temperature, here
we extend it to describe thermostatic processes in which the tem-
perature varies with time by introducing multiple heat baths. Thus,
we consider a situation in which N independent heat baths,
each in the thermal equilibrium state at the inverse temperature
βk ≡ 1/kBTk are connected to or disconnected from the subsystem A
using the window function ξk(t). The bath part of the Hamiltonian
is expressed as follows:

ĤI+B(t) =
N

∑
k=1
(Ĥk

B + ξk(t)Ĥk
I). (5)

Here, the kth bath Hamiltonian is expressed as an ensemble of
harmonic oscillators and is given by

Ĥk
B ≡∑

j

⎧⎪⎪⎨⎪⎪⎩

(p̂ k
j)2

2mj
+ 1

2
mk

j(ωk
j)2(x̂ k

j)2
⎫⎪⎪⎬⎪⎪⎭

, (6)

where the momentum, position, mass, and frequency of the jth bath
oscillator are given by p̂k

j , x̂k
j , mk

j , and ωk
j , respectively. Here, we

consider the situation where the kth bath is always in the thermal
equilibrium state exp (−βkĤk

B) and heat is transferred to the bath
only when the bath is connected to the subsystem.

The SB interaction, including the counter term, is expressed as

Ĥk
I ≡∑

j

⎧⎪⎪⎨⎪⎪⎩
−AkV(q̂)ck

j x̂
k
j +
(ck

j)2A2
kV2(q̂)

2mk
j(ωk

j)2

⎫⎪⎪⎬⎪⎪⎭
, (7)

where ck
j is the SB coupling coefficient of the jth bath oscillator and

Ak and V(q̂) are the coupling strength and the subsystem part of
the kth SB interaction, respectively. In the study of optical spec-
troscopy, V(q̂) describes the effects of vibrational relaxation and
dephasing.64,65,70 The counterterm is introduced to preserve the
translational symmetry of the total Hamiltonian at U(q̂) = 0 and
to remove the undesired self-energy divergence that occurs in the
Markovian case.32–40,55–57

The major difference when evaluating thermodynamic prop-
erties is that in the present model, the interaction term Ĥk

I is
reduced with the bath, whereas in the spin-boson model,45,54 it is
treated separately from the bath.28–31 This makes the classical limit
of the thermal equilibrium state of the time-independent subsys-
tem [E(t) = 0] at βk identical to that of the isolated subsystem as
ρ̂eq

A = exp (−βkĤ0
A), not as ρ̂eq

A = trB{exp [−βk(Ĥ0
A + Ĥk

I+B)]}, while
the quantum equilibrium state is still different from the isolated
one owing to the bathentanglement.38,39 This is a desirable feature
for comparison with the conventional (classical) thermodynamic
results, where the interaction is not explicitly considered.

The kth bath at βk is characterized by a spectral distribution
function (SDF) defined as

Jk(ω) ≡∑
j

h̵(ck
jAk)2

2mk
jωk

j
δ(ω − ωk

j). (8)

The window function, which we call the “thermostatic field,” is,
for example, defined as

ξk(t) = θ(t − tk)θ(tk + Δt − t), (9)

where θ(t) is the step function and the time tk is defined as tk = t0
+ (k − 1)Δt, with initial time t0 and duration Δt.

For a fixed temperature βk = β, Ak(t) ≡ Akξk(t) [i.e., A2
k(t)

= A2
kξk(t)] is the “adiabatic transition field” introduced to describe

isothermal–adiabatic manipulations (e.g., the insertion/removal of
an adiabatic wall or the connection/disconnection of the subsystem
and bath30,31).

For a fixed coupling strength Ak = A, the thermostatic processes
can be described by utilizing ξk(t) for multiple heat baths with dif-
ferent temperatures Tk to set only one bath as being connected to a
subsystem at a time. In this case, the bath temperature is effectively
expressed as

T(t) =
N

∑
k=1

Tkξk(t) (10)

or the inverse temperature as β(t) = [kBT(t)]−1, except in the
adiabatic case.

B. Quantum fluctuation–dissipation theorem
For the kth bath, if we consider the interaction coordinate of the

bath modes as X̂ k ≡ ∑ j ck
j x̂

k
j , the subsystem A is driven by the exter-

nal force X̂ k(t) through the interaction −V(q̂)X̂ k, where X̂ k(t) is
the Heisenberg representation of X̂ k for Ĥk

B. Because each bath is a
harmonic that is Gaussian in nature, the character of X̂ k(t) is spec-
ified by its two-time correlation functions, such as the symmetrized
and canonical correlation functions defined by37–41,55–57

Ck(t) = 1
2
⟨X̂ k(t)X̂ k(0) + X̂ k(0)X̂ k(t)⟩B (11)

and

Rk(t) = βk

2
⟨X̂ k; X̂ k(t)⟩B

≡ 1
2∫

βk

0
dλ ⟨X̂ k(−ih̵λ)X̂ k(t)⟩

B
, (12)

where ⟨⋅ ⋅ ⋅⟩B represents the thermal average of the kth bath degree of
freedom.

The function Ck(t) corresponds to fluctuation and is analogous
to the classical correlation function Xk(t), whereas Rk(t) corre-
sponds to dissipation. Both are induced by the bath, and they are
related through the fluctuation–dissipation theorem in Fourier form
as Ck[ω] = hω coth(βkhω/2)Rk[ω].41 Note that in the SB system, the
fluctuation–dissipation relation is the condition to have the thermal
equilibrium state, while the detailed balance condition is not satisfied
under the strong or non-Markovian SB coupling conditions.37–40

With the SDF, these are expressed as

Ck(t) = ∫
∞

0
dωJk(ω) coth(βkh̵ω

2
) cos (ωt) (13)
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and

Rk(t) = ∫
∞

0
dω

Jk(ω)
h̵ω

cos (ωt). (14)

In any situation, by choosing the SDF in a continuous form,
the bath degrees of freedom become effectively infinite. The energy
eigenstates of the total system then become continuous and exhibit
time-irreversible dynamics toward the thermal steady state, with
or without time-dependent external fields, while the total system
remains an isolated Hamiltonian system that conserves energy.
When E(t) = 0, if the change in Tk is small and Δt is large, the
total system enters a canonical distribution described as ρ̂eq

tot(tk)
≈ exp [−βk(Ĥ0

A + Ĥk
I+B)], which can be verified from the steady-

state solution of the HEOM and from the solution of the imaginary
HEOM39 (also see Appendix A).

In this study, we focus on the quasi-static case and assume that
the correlation time of the noise is much shorter than the character-
istic time scale of the system dynamics. Thus, we consider the Ohmic
case described by

Jk(ω) = h̵A2
kω

π
. (15)

The correlation functions in Eqs. (13) and (14) are then
evaluated as57

Ck(t) ≃ 2A2
k

βk
(1 +

K

∑
l=1

2)δ(t) −
K

∑
l=1

2A2
kνk

l
βk

e−νk
l ∣t∣ (16)

and

Rk(t) = A2
kδ(t). (17)

Note that in this Ohmic SDF, some of the physical observables,
including the mean square of the momentum, ⟨p2⟩, diverge with-
out the cutoff K because of the divergence of the first and second
terms in Eq. (16) under the infinite summation over l, which is often
referred to as ultraviolet divergence.35,36,71,72 However, because the
contributions of random forces from such terms are averaged over
a sufficiently short time, their effect on the dynamics of interest can
be ignored by choosing a finite K.57

We choose the coefficients νk
l and ηk

l to realize the relation for
finite K, where the first term on the right-hand side of Eq. (16) is
the classical contribution from the temperature, and the remain-
ing terms are the quantum low-temperature (QLT) corrections.57 It
should be noted that the fluctuation term is always non-Markovian
because of the quantum nature of the noise; it can be regarded as
Markovian only in the high-temperature limit, βkhω0 ≪ 1, in which
the heat bath exhibits a classical behavior.36,37 This is an impor-
tant conclusion obtained from the quantum fluctuation–dissipation
theorem. That is, negative non-Markov terms always appear in the
Ohmic case unless a time coarse-grained Markov assumption is
adopted, which is often unphysical as a description of quantum
thermodynamics.37–40

C. Non-equilibrium enthalpy and internal energy
In a typical thermodynamic theory, a system is characterized

by thermodynamic potentials described in terms of intensive vari-
ables, such as electric field E and temperature T, and extensive

variables, such as polarization P and entropy S. To construct a quan-
tum thermodynamic theory similar to thermodynamics, isothermal
and isentropic (dE and dP) processes as well as thermostatic and
entropic (dT and dS) processes must be investigated. However, most
investigations, including traditional thermodynamics, to date have
been limited to isothermal processes in which only the external field
corresponding to the intensive variable is manipulated.

Although various quantum thermodynamic studies have been
conducted, it has been difficult to derive thermodynamic laws
involving the total derivative of temperature (dT) owing to the dif-
ficulty of including thermostatic processes. Moreover, these studies
have not introduced extensive variables, such as P, as observables
in open quantum systems, nor have they provided their Legendre
transformations, which play an essential role in thermodynamics.

Here, we show that we can construct a complete description of
a thermodynamic theory from work in isothermal processes (Tfix)
and heat in constant external field (or thermostatic) processes (Efix).
For this purpose, we introduce the expectation values of energy
for each component of the Hamiltonian. From the Hamiltonian
[Eqs. (2)–(4)], the total energy of the subsystem is expressed as

HA(t) = UA(t) +H′(t), (18)

where

UA(t) ≡ trA{Ĥ0
Aρ̂A(t)} (19)

is the self-energy of the subsystem, which is considered “internal
energy” in a quasi-static case, and

H′(t) = −E(t)PA(t) (20)

is the interaction energy described with the optical polarization
defined as

PA(t) ≡ trA{μ(q̂)ρ̂A(t)}, (21)

where ρ̂A(t) = trB{ρ̂tot(t)} is the reduced density operator for the
total density operator ρ̂tot(t).

While E(t) is an intensive variable, PA(t) is an extensive vari-
able. This is because for distinguishable M subsystems without
mutual interaction, the total density operator is expressed as ρ̂(M)A
= ρ̂A ⊗ ⋅ ⋅ ⋅ ⊗ ρ̂A, and thus, PA(t) becomes proportional to the size
of the system. Moreover, because the evaluation of PA(t) requires
a statistical average of the distribution function ρ̂A(t) even for a
single-particle system, we can evaluate it as a thermal variable.

Because E(t) and PA(t) are conjugate to each other, the relation

HA(t) = UA(t) − E(t)PA(t) (22)

is regarded as a time-dependent Legendre transformation between
non-equilibrium enthalpy HA(t) and internal energy UA(t).

The total non-equilibrium enthalpy is now expressed as

Htot(t) = HA(t) +
N

∑
k=1

Hk
I+B(t), (23)

where Hk
I+B(t) is the enthalpy of the kth bath, defined as

Hk
I+B(t) = trtot{Ĥk

I+B(t)ρ̂tot(t)}. (24)
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The bath part of the energy (non-equilibrium bath enthalpy) is then
expressed as

HI+B(t) ≡
N

∑
k=1

Hk
I+B(t). (25)

III. DIMENSIONLESS THERMODYNAMIC VARIABLES
Although the minimum work principle for an intensive vari-

able, expressed as W int
A (t) ≥ ΔGqst

A , provides the condition for deter-
mining the thermodynamic potential from work,29 it does not do so
for heat, which is important in determining entropy. We find that
this difficulty can be overcome by introducing the dimensionless
enthalpy of the subsystem, defined as H̃A(t) ≡ β(t)HA(t). We use
this to define the changes in dimensionless (or entropic) “intensive
work” and “extensive heat” in time corresponding to power and heat
flow, respectively, as follows:

dW̃ int
A (t)
dt

≡ trA{
∂

∂t
[β(t)ĤA(t)]ρ̂A(t)} (26)

and

dQ̃ext
A (t)
dt

≡ trA{[β(t)ĤA(t)]
∂ρ̂A(t)
∂t

}. (27)

These are interrelated by the following time-dependent Legendre
transformation:

dW̃ int
A (t)
dt

= −dQ̃ext
A (t)
dt

+ d
dt
[β(t)HA(t)]. (28)

They are then evaluated as

dW̃ int
A (t)
dt

= HA(t)
dβ(t)

dt
− P̃A(t)

dE(t)
dt

(29)

and

dQ̃ext
A (t)
dt

= β(t)dHA(t)
dt

+ P̃A(t)
dE(t)

dt
, (30)

where P̃A(t) is the dimensionless polarization, defined as

P̃A(t) = β(t)PA(t). (31)

In quantum thermodynamics, work has been defined using the
change in an intensive variable as PA(t)dE(t). In typical thermo-
dynamics, however, work can also be defined as the change in an
extensive variable as −E(t)dPA(t). To treat work defined as such,
we further introduce the dimensionless (or entropic) “extensive
work” using a time-dependent Legendre transformation of W̃ int

A (t)
as follows:

dW̃ext
A (t)
dt

= dW̃ int
A (t)
dt

+ d
dt
[P̃A(t)E(t)]

= HA(t)
dβ(t)

dt
+ E(t)dP̃A(t)

dt
. (32)

The fundamental difference between the present treatment
and the conventional treatment of thermodynamics is that the
total energy, including the heat bath, is explicitly described by the

Hamiltonian. Thus, we consider the dimensionless total enthalpy
expressed as

H̃tot(t) = trtot{ ˆ̃Htot(t)ρ̂tot(t)}, (33)

where ˆ̃Htot(t) is the dimensionless total Hamiltonian defined as

ˆ̃Htot(t) ≡ β(t)ĤA(t) +
N

∑
k=1

βkĤk
I+B(t). (34)

The relationship between dimensionless (or entropic) total work and
heat is then expressed as

dW̃ int
tot(t)
dt

= −dQ̃ext
tot(t)
dt

+ d
dt

H̃tot(t), (35)

where

dW̃ int
tot(t)
dt

= trtot

⎧⎪⎪⎨⎪⎪⎩

∂ ˆ̃Htot(t)
∂t

ρ̂tot(t)
⎫⎪⎪⎬⎪⎪⎭

(36)

and

dQ̃ext
tot(t)
dt

= 0. (37)

Here, to obtain Eq. (37), we consider the case in which the subsystem
is connected to only one bath at the same time and use the following
identity:

trtot{Ĥtot(t)
∂ρ̂tot(t)

∂t
} = 0. (38)

From Eq. (35), we have

dW̃ int
tot(t)
dt

= dH̃tot(t)
dt

. (39)

Thus, the thermal current between the subsystem and bath is
conserved as

dQ̃ext
A (t)
dt

= −dQ̃ext
I+B(t)
dt

, (40)

where

dQ̃ext
I+B(t)
dt

=
N

∑
k=1

trtot{βkĤk
I+B(t)

∂ρ̂tot(t)
∂t

}. (41)

We then identify the time derivative of the dimensionless bath
entropy, i.e., S̃I+B(t) = SI+B(t)/kB, with the dimensionless bath heat
current as follows:

dS̃I+B(t)
dt

= dQ̃ext
I+B(t)
dt

. (42)

IV. THE LAWS OF THERMODYNAMICS
Quantum mechanics is a first-principles theory, and its log-

ical structure is reasonably simple. By contrast, thermodynamics
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is a phenomenological theory developed on the basis of several
principles and statements. In this section, we deduce thermody-
namics from quantum mechanics using observables, defined as
quantum mechanical expectation values, to clarify the central dogma
of thermodynamics.

A. First to third laws of thermodynamics
1. First law: Energy conservation law

The key principle for energy in quantum mechanics is the
energy conservation law for work, whereas in thermodynamics,
energy is described not only as work but also as heat. In fact, by
adding Eqs. (30) and (32), we have the first law of thermodynamics
expressed as

dŨA(t)
dt

= dW̃ext
A (t)
dt

+ dQ̃ext
A (t)
dt

, (43)

where

ŨA(t) = β(t)HA(t) + E(t)P̃A(t) (44)

is the dimensionless non-equilibrium internal energy also expressed
as ŨA(t) = β(t)UA(t). The above-mentioned equality is the con-
sequence of the energy conservation law expressed as the time
derivative of Eq. (23) as follows:

dHtot(t)
dt

= dHA(t)
dt

+ dHI+B(t)
dt

. (45)

Then, using Eqs. (38) and (40), we obtain Eq. (43).

2. Second law: Increasing internal energy under
time-irreversible process

As an extension of the minimum work principle for work, as
being done from the outside to the subsystem, we consider “the
dimensionless (or entropic) minimum work principle” for the total
system from one equilibrium state to another, expressed as

W̃ int
tot ≥ (W̃ int

tot)
qst

, (46)

where W̃ int
tot is defined by Eq. (36) and (W̃ int

tot)qst represents a transi-
tion that occurs quasi-statically. The proof of the above-mentioned
inequality is given in Appendixes A and B. Unlike the existing mini-
mum work principle, this definition can treat a thermostatic process.
From Eq. (39), the above-mentioned inequality can also be expressed
as

ΔH̃tot ≥ ΔH̃qst
tot , (47)

which corresponds to “the law of increasing enthalpy” under a time-
irreversible process for a closed system.

When the coupling strength is fixed and the contribution of
work from the SB interaction is incorporated into the system, which
is the case in the present Brownian-based model, we have the
equality,

dW̃ int
A (t)
dt

= dW̃ int
tot(t)
dt

, (48)

and Eq. (46) reduces to

W̃ int
A ≥ (W̃ int

A )
qst

. (49)

This relation is an extension to thermostatic processes of the min-
imum work principle for isothermal processes, which states that
thermodynamic weight is maximized in a quasi-static equilibrium
state. Because not only the intensive variables β(t) and E(t) but also
the extensive variables P̃A(t) and HA(t)may change independently
during a non-equilibrium transition between the two equilibrium
states, we can obtain the relationship for heat with the use of Eq. (28)
as

Q̃ext
A ≤ (Q̃ ext

A )
qst

, (50)

which is equivalent to “the principle of maximum entropy.” This
is because for the transition from equilibrium state 1 at time t1 to
equilibrium state 2 at t2, we have

∫
t2

t1

1
T(t′)

dQA(t′)
dt′

dt′ ≤ ΔSqst
A , (51)

where

dQA(t)
dt

= trA{ĤA(t)
∂ρ̂A(t)
∂t

} (52)

is the system heat current,28 which satisfies β(t)dQA(t)/dt
= dQ̃ext

A (t)/dt.
From Eqs. (40) and (51), the law of total entropy production is

expressed as

ΔStot ≥ 0, (53)

where ΔStot is a total entropy difference between the equilibrium
states at time t1 and t2, defined as

ΔStot = ΔSqst
A + ∫

t2

t1

dSI+B(t)
dt

dt. (54)

Here, SI+B(t) = kBS̃I+B(t) is the bath entropy [see Eq. (42)].
We can also obtain the inequality for dimensionless

(or entropic) extensive work using the Legendre transformation
(32) for Eq. (49) as

W̃ext
A ≥ (W̃ ext

A )
qst

. (55)

3. Third law: Zero-temperature limit of the SB model
In the framework of open quantum dynamics theory, the third

law of thermodynamics should describe the state of the subsys-
tem in the limit of zero temperature, but anomalous behavior has
been found in the spin-boson system at zero temperature.43–47 Thus,
entropy may not be zero even at zero temperature because of the
essential role played by bathentanglement: the entropy may diverge
as β→∞ as the classical approximation (βhωA ≪ 1, where ωA is
the characteristic frequency of the subsystem) collapses in the low-
temperature regime. This implies that some statements of the third
law of thermodynamics, such as “the entropy of a system at absolute
zero is a well-defined constant,” do not hold for quantum systems
described by an SB model, whereas Nernst’s statement “it is impos-
sible for any procedure to reach T = 0 in a finite number of steps,”
which is equivalent to the assertion that “thermodynamic states
with T = 0 do not exist” seems reasonable—although theoretically
anything is possible.
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B. Thermodynamic potentials
1. Massieu–Planck potentials: Entropic
state representation

Quasi-static dimensionless (or entropic) work and heat are
related to the (dimensionless) Massieu–Planck potentials, which are
entropic thermodynamic potentials defined as Legendre transforms
of entropy.2–5 Two of these functions are the Massieu and Planck
potentials, introduced as dimensionless forms of the Helmholtz and
Gibbs energies and defined as ΦA ≡ βFA and ΞA ≡ βGA, respectively.
The other two are entropy–derived potentials: the dimensionless
entropy ΠA and its conjugate entropy ΘA. Because these two do not
seem to have previously been given names, here we refer to ΠA as the
Clausius entropy (C-entropy) after Clausius, who first introduced
entropy,6 and to ΘA, associated with the partition function that
manifestly includes an intensive variable, as the Boltzmann entropy
(B-entropy). In the present case, we can introduce the Massieu and
Planck potentials and the B-entropy as ΔΦqst

A = −(W
ext
A )qst, ΔΞqst

A
= −(W int

A )qst, and ΔΘqst
A = (Q̃

ext
A )qst, respectively.

Thus, from Eqs. (49) and (55), we obtain the dimensionless
(or entropic) minimum work principle for the intensive and
expensive work defined as being done from the outside as

W̃ int
A ≥ −ΔΞqst

A (56)

and

W̃ext
A ≥ −ΔΦqst

A . (57)

The latter inequality is a generalization of the Kelvin–Planck state-
ment, often used as a definition of the second law of thermodynam-
ics, for isothermal processes. From Eq. (50), we obtain

Q̃ext
A ≤ ΔΘqst

A , (58)

which we call “the principle of maximum dimensionless heat
generation” and which is equivalent to “the principle of maximum
B-entropy.”

From Eqs. (28) and (32), we find that these entropic potentials
are related by the following Legendre transformations:

Φqst
A (t) = Ξqst

A (t) − P̃qst
A (t)E

qst(t) (59)

and

Θqst
A (t) = Ξqst

A (t) + βqst(t)Hqst
A (t), (60)

respectively, where the quasi-equilibrium values of the potentials are
evaluated from Eqs. (49), (50), and (55). From these, the C-entropy
can be expressed as

Πqst
A (t) = Φqst

A (t) + βqst(t)Hqst
A (t). (61)

The Planck potential is convex for the inverse temperature
βqst(t) and the external field Eqst(t) (see Appendix C). Thus,
the natural variables of the Planck potential are βqst(t) and
Eqst(t), described as Ξqst

A [β
qst(t), Eqst(t)]. From Eqs. (59)–(61),

we can express the Massieu potential and the dimension-
less entropies as Φqst

A [β
qst(t), P̃qst

A (t)], Θqst
A [H

qst
A (t), Eqst(t)], and

Πqst
A [H

qst
A (t), P̃qst

A (t)]. The various relationships between the
entropic potentials and intensive and extensive variables can be
derived for these potentials.4,5 It should be noted that although we
chose enthalpy as the natural variable, it is possible to choose inter-
nal energy for the description of the dimensionless thermodynamic
potentials (see Appendix D).

We summarize the dimensionless thermodynamic (or
entropic) potentials as functions of the natural variables in total
differential form in Table I.

2. Helmholtz–Gibbs potentials: Energy
state representation

From dimensionless thermodynamic variables, potentials are
naturally expressed in the entropic representation, while the energy
state representation of potentials is commonly used in ther-
modynamics. For convenience in numerical simulations and to
facilitate extension to non-equilibrium states,29–31 we introduce
these potentials by evaluating them for the isothermal case and
constant-external field (thermostatic) cases.

For fixed β(t) = β (isothermal case), the inequalities (49) and
(55) for Fqst

A (t) = −(W̃
ext
A )qst/β and Gqst

A (t) = −(W̃
int
A )qst/β reduce

to

Wext
A ≥ ΔFqst

A (62)

TABLE I. Total differential expressions for the quasi-static (qst.) entropic potentials as functions of the intensive variables
βqst
(t) and Eqst

(t) and the extensive variables Hqst
A (t) and P̃qst

A (t). Entropy has two definitions, depending on whether
the work variable is intensive or extensive. Of these dimensionless entropies, the commonly used one, which we call Clau-
sius entropy (C-entropy) and involves only extensive variables, is expressed as Πqst

A [H
qst
A , Pqst

A ], whereas the less widely

used one, which we call Boltzmann entropy (B-entropy), is expressed as Θqst
A [H

qst
A , Eqst

]. The potentials are related by the
Legendre transformations as shown.

Qst. Potential Differential form Natural var. Legendre transformation

Massieu dΦqst
A = −Hqst

A dβqst − EqstdP̃qst
A βqst, P̃qst

A ⋅ ⋅ ⋅
Planck dΞqst

A = −Hqst
A dβqst + P̃qst

A dEqst βqst, Eqst Ξqst
A = Φqst

A + EqstP̃qst
A

B-entropy dΘqst
A = βqstdHqst

A + P̃qst
A dEqst Hqst

A , Eqst Θqst
A = Ξqst

A + βqstHqst
A

C-entropy dΠqst
A = βqstdHqst

A − EqstdP̃qst
A Hqst

A , P̃qst
A dΠqst

A = Φqst
A + βqstHqst

A
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and

W int
A ≥ ΔGqst

A , (63)

where we define the extensive work Wext
A and intensive work W int

A by

dWext
A (t)
dt

= −trA{Ĥ′A(t)
∂ρ̂A(t)
∂t

} (64)

and

dW int
A (t)
dt

= trA{
∂Ĥ′A(t)

∂t
ρ̂A(t)}. (65)

We can then evaluate the two free energies as ΔFqst
A = (W

ext
A )qst

and ΔGqst
A = (W

int
A )qst. The inequality (62) corresponds to the

Kelvin–Planck statement. From Eq. (32), these intensive and exten-
sive works satisfy the time-dependent Legendre transformation,
expressed as

dWext
A (t)
dt

= dW int
A (t)
dt

+ PA(t)E(t). (66)

While the Planck potential is convex for the external field Eqst(t),
the Gibbs energy is concave for Eqst(t) because Gqst

A (t) = −Ξqst
A (t)/β.

From Eq. (59), the Helmholtz and Gibbs energies satisfy the
Legendre transformation expressed as

Fqst
A (t) = Gqst

A (t) + Pqst
A (t)E

qst(t). (67)

When we fix the external field E(t) = Efix, the inequality for the
dimensionless entropy reduces to

∫
t2

t1

β(t)dHA(t)
dt

dt ≤ ΔΘqst
A , (68)

where the system is in equilibrium at times t1 and t2 and we have
introduced the time-integral form so that HA(t) can be treated even
when it has a singular point as a function of t. From Appendix C, we
can prove that the dimensionless entropy is concave as a function of
enthalpy, expressed as

∂2Θqst
A (t)

∂(Hqst
A (t))

2 < 0. (69)

From the total differential form of the dimensionless entropy pre-
sented in Table I, we obtain ∂Θqst

A (t)/∂Hqst
A (t) = βqst(t). Thus,

Eq. (69) reduces to

∂βqst(t)
∂Hqst

A (t)
< 0, (70)

which means that the heat capacity is positive, i.e., ∂Hqst
A

(t)/∂Tqst(t) > 0, with the use of dβqst(t) = −dTqst(t)/kB[Tqst(t)]2.
For the constant-external-field process, we also have the

relation (see Appendix E), expressed as

Sqst
A (t) = −

∂Gqst
A (t)

∂Tqst(t) , (71)

where Sqst
A (t) = kBΘqst

A (t). Using Eq. (71) and the principle of min-
imum dimensionless work, we can prove that the Gibbs energy is
convex for the temperature Tqst(t) (see Appendix F). Thus, the nat-
ural variables of the Gibbs energy are the temperature Tqst(t) and
the external field Eqst(t), expressed as Gqst

A [T
qst(t), Eqst(t)].

From Eq. (60), we obtain the Legendre transformation for the
enthalpy as

Hqst
A (t) = Gqst

A (t) + Tqst(t)Sqst
A (t). (72)

Because the Gibbs and Helmholtz energies are related by the Leg-
endre transformation for Eqst(t) and Pqst

A (t), the Helmholtz energy
is also convex for the temperature Tqst(t). Thus, from Eq. (18), we
obtain the Legendre transformation between the Helmholtz energy
and internal energy as follows:

Uqst
A (t) = Fqst

A (t) + Tqst(t)Sqst
A (t). (73)

From Eqs. (67), (72), and (73), the thermodynamic potentials are
expressed in terms of the natural variables as Fqst

A [T
qst(t), Pqst

A (t)],
Hqst

A [S
qst
A (t), Eqst(t)], and Uqst

A [S
qst
A (t), Pqst

A (t)], respectively.
We summarize the thermodynamic potentials as functions of

the natural variables in total differential form in Table II.
Although Table II is similar to the well-known table of ther-

modynamics for the equilibrium state, we have obtained it from a
dynamical approach using a quasi-static process and have not relied
on calculation of the partition function. This indicates that the same
results can be obtained not only theoretically but also experimentally
by measuring heat and polarization in quasi-static processes.

TABLE II. Total differential expressions for the quasi-static (qst.) thermodynamic potentials as functions of the inten-
sive variables Tqst

(t) and Eqst
(t) and the extensive variables Sqst

A (t) and Pqst
A (t), which are related through Legendre

transformations.

Qst. potential Differential form Natural var. Legendre transformation

Helmholtz dFqst
A = −Sqst

A dTqst + EqstdPqst
A Tqst, Pqst

A ⋅ ⋅ ⋅
Gibbs dGqst

A = −Sqst
A dTqst − Pqst

A dEqst Tqst, Eqst Gqst
A = Fqst

A − EqstPqst
A

Internal dUqst
A = TqstdSqst

A + EqstdPqst
A Sqst

A , Pqst
A Uqst

A = Fqst
A + TqstSqst

A
Enthalpy dHqst

A = TqstdSqst
A − Pqst

A dEqst Sqst
A , Eqst Hqst

A = Gqst
A + TqstSqst

A
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V. NUMERICAL DEMONSTRATIONS
A. Reduced equations of motion for thermodynamic
processes

We consider the standard Brownian model described as
V(q̂) ≡ q̂ although, if necessary, we can treat nonlinear SB cou-
pling, which is critical for the description of molecular motion.64,65,70

We then set μ(q̂) ≡ μq̂ and introduce the time-dependent potential
defined as

U′(q̂; t) = U(q̂) − μq̂E(t). (74)

For the reduced density matrix element ρA(q, q′; t)
= ⟨q∣ρ̂A(t)∣q′⟩, we introduce the Wigner distribution function,
which is the quantum analog of the classical distribution function in
phase space, defined as

WA(p, q) ≡ 1
2πh̵∫

∞

−∞
dx eipx/h̵ρA(q − x

2
, q + x

2
). (75)

The Wigner distribution function is a real function, in contrast to
the complex density matrix: it reduces to the classical distribution
function in the classical limit.

We choose the coefficients νk
l and ηk

l in Eq. (16) for finite
K. Then, we incorporate this contribution using the HEOM
formalism.38,57 To reduce the computational cost, we employ the
Padé spectral decomposition (PSD) scheme for ηk

l and νk
l to

enhance computational efficiency while maintaining accuracy.73

For time-dependent β(t), the decomposition constant becomes a
time-dependent function as νl(t).

Under quasi-static conditions, we assume that the time scale
of the quantum thermal fluctuations β(t)h/2π is shorter than that
of the subsystem. Thus, the SB coherence among different heat
baths [e.g., the kth bath and the (k + 1)th bath] is negligible.
Under this condition, we can describe the system dynamics using a
K-dimensional hierarchy instead of a (K ×N)-dimensional hierar-
chy, where N is the number of heat baths.

1. Low-temperature quantum Fokker–Planck
equations (LT-QFPE) for thermodynamic processes

Under the PSD scheme, the equations of motion for the Wigner
function are expressed as57

∂

∂t
Wn⃗(p, q; t) = −( L̂qm(t) +

K

∑
l

nlνl(t) + Ξ̂K(p, q; t))Wn⃗(p, q; t)

−
K

∑
l=1

Φ̂p(t)Wn⃗+e⃗l(p, q; t)

−
K

∑
l=1

nlνl(t)Θ̂l(p, q; t)Wn⃗−e⃗l(p, q; t), (76)

where n⃗ ≡ (. . . , nk, . . . ) is a K-dimensional multi-index whose com-
ponents are all non-negative integers and e⃗k ≡ (0, . . . , 1, 0, . . . ) is the
kth unit vector. The multi-index n⃗ represents the index of the hier-
archy. Physically, the first hierarchical element, W0⃗(p, q, t), corre-
sponds to WA(p, q, t), and the rest of the hierarchical elements serve
only to facilitate the treatment of the non-Markovian system–bath

interaction that arises from the hierarchical low-temperature expan-
sion of the noise correlation functions in terms of e−ν(t)t. In the
Wigner representation, the quantum Liouvillian takes the form,57,74

− L̂qm(t)W(p, q) ≡ − p
m

∂

∂q
W(p, q)

+
∞

∑
n=0

1
(2n + 1)!

∂2n+1U′(q; t)
∂q2n+1 (− h̵2

4
∂2

∂p2 )
n
∂

∂p
W(p, q; t).

(77)

The operators appearing in Eq. (76) are defined as

Φ̂p(t) ≡ −
A

β(t)
∂

∂p
, (78)

Θ̂0(p, q; t) = Aβ(t)
m
(p + m

β(t)
∂

∂p
), (79)

Θ̂l(p, q; t) ≡ 2Aηl
∂

∂p
(for 1 ≤ l ≤ K), (80)

and

Ξ̂K(p, q; t) ≡ Φ̂p(t)
K

∑
l=0

Θ̂l(p, q; t). (81)

Owing to the presence of low-temperature correction terms, the sys-
tem and bath are entangled,38 i.e., ρ̂tot(t) ≠ ρ̂0

A(t)ρ̂B(t), where ρ̂0
A(t)

= trB{ρ̂tot(t)}.
Because we consider the case in which the time scale of the

quantum thermal fluctuations β(t)h/2π is shorter than the time scale
of the subsystem 1/ωA, the coherence between the subsystem and
different heat baths [e.g., the kth and (k + 1)th baths] is taken into
account by the time-dependent Matsubara frequencies expressed as
νl(t).
2. Kramers equation for thermodynamic processes

The Wigner distribution function reduces to the classical dis-
tribution function in the limit h→ 0, and hence, we can directly
compare the quantum results to the classical results.39 The classical
limit of LT-QFPE is the Kramers equation expressed as55–57,75,76

∂

∂t
W(p, q; t) = − L̂cl(t)W(p, q; t)

+ A2

m
∂

∂p
(p + m

β(t)
∂

∂p
)W(p, q; t),

(82)

where the classical Liouvillian is defined as

− L̂cl(t)W(p, q) = − p
m

∂

∂q
W(p, q) + ∂U′(q; t)

∂q
∂

∂p
W(p, q).

(83)

The description of the Kramers equation is equivalent to that of the
Langevin equation,55

mq̈ + A2q̇ + dU′(q; t)
dq

+Ω(t) = 0, (84)
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with the Gaussian white noise defined as

⟨Ω(t)⟩ = 0, ⟨Ω(t)Ω(0)⟩ = A2

β(t)δ(t). (85)

It should be noted that W(p, q; t) in the Kramers equation is a prob-
ability distribution function, whereas q in the Langevin equation is a
sampling trajectory and cannot be a distribution function unless the
trajectories are averaged over for noise sampling.

Although it is physically impossible to change the temperature
of a heat bath with infinite specific heat, Eqs. (76), (82), and (84) take
forms in which β in the equations of motion derived under the ther-
mostatic process has been replaced with β(t). It should be noted,
however, that in the non-Ohmic case, the temperature changes even
on the time scale on which the noise correlations are defined. This
makes it difficult to apply the fluctuation–dissipation theorem to
characterize the noise, and thus, a simple replacement β→ β(t) is
not allowed.

3. Isothermal work and constant-external-field heat
We denote the solution of the reduced density elements

obtained from Eq. (76) under any E(t) by Wn⃗(p, q, t), whereas
that of the classical distribution function obtained from Eq. (82) is
denoted by W(q, p; t). The polarization and enthalpy at time t are
evaluated as

PA(t) = μ trA{qW0⃗(p, q; t)}∣T(t)=T (86)

and

HA(t) = trA{[
p2

2m
+U′(q; t)]W0⃗(p, q; t)}, (87)

respectively. By replacing W0⃗(p, q, t) with W(p, q, t) in the above,
we can evaluate the classical results. The dimensionless heat current
in Eq. (27) is expressed as

dQA(t)
dt

= −trA{(
Ap
m
)

2
W0⃗(p, q; t)} + A2

mβ(t)(1 + 2
K

∑
l=1

ηl)

−
K

∑
l=1

trA{
Ap
m

We⃗l(p, q; t)} (88)

for the quantum case and as

dQA(t)
dt

= −trA{(
Ap
m
)

2
W(p, q; t)} + A2

mβ(t) (89)

for the classical case. However, we find that the accuracy of the
numerical result obtained from Eqs. (88) and (89) is not sufficient
because the heat current dQA(t)/dt does not become zero even when
the system approaches equilibrium, and the errors accumulate over
a long simulation time. Thus, we calculate the dimensionless heat
current using Eqs. (86) and (87) as

dQ̃A(t)
dt

= β(t)dHA(t)
dt

+ β(t)PA(t)
dE(t)

dt
. (90)

From Eq. (52), the bath plus SB interaction heat is defined
as

dQI+B(t)
dt

= trtot{ĤI+B(t)
∂ρ̂tot(t)

∂t
} (91)

and satisfies d(QA(t) +QI+B(t))/dt = 0.

B. Numerical results
1. Simulation details

We perform simulations for an anharmonic potential system
to demonstrate that our theory provides a practical means of com-
puting thermodynamic variables and thermodynamic potentials for
arbitrary systems. Thus, we consider a quartic anharmonic poten-
tial with external interaction described by μ(q̂) = q̂. The potential
function is expressed as

U′(q̂) = U2q̂ 2 +U3q̂ 3 +U4q̂ 4 − E(t)q, (92)

where the harmonic and anharmonic constants are U2 = 0.1, U3
= 0.02, and U4 = 0.05.

Snapshots of the potential surface with the eigenstates and
eigenenergies are shown in Fig. 1. In the isothermal process, the
first excitation energy is ΔEg→e(t) ∼ 0.8, and so the bath temper-

FIG. 1. Potential surfaces with (a) E(t = 0) = 0.2 and (b) E(t = τqst
) = 0.5 are

represented by the black curves. The blue and red curves represent the ground
and excitation states at their respective excitation energies. From this figure, the
bath temperature is considered to be low when T = 1/(kBβ) ≈ 0.3 and high when
T = 1/(kBβ) ≈ 5.0.
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ature is considered low when T = 1/(kBβ) ≈ 0.3 and high when
T = 1/(kBβ) ≈ 5.0.

To obtain a comprehensive theory for thermodynamic poten-
tials, not only the external field E(t) but also the temperature T(t)
must be time-dependent as intensive variables. Thus, we simulate
both isothermal and thermostatic processes.

We consider an isothermal process driven by a quasi-static
change in E(t) that consists of (i) equilibrium, (ii) quasi-static, and
(iii) equilibrium steps, defined as

Eqst(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) 0.2 (t < 0),
(ii) 0.2 + 0.3 t/τqst (0 ≤ t < τqst),
(iii) 0.5 (τqst ≤ t).

(93)

Here, the constant τqst is the time duration parameter for the quasi-
static process, and we set τqst = 1.0 × 104.

To calculate Sqst
A (t), we consider the thermostatic transition

with fixed external field E(t) = 0.2 after isothermal evolution until
time t = 0. The time profile of T(t) is set by

Tqst(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) T0 (t < 0),
(ii) (1.0 + t/τqst)T0 (0 ≤ t < τqst),
(iii) 2T0 (τqst ≤ t),

(94)

where T0 is the initial temperature. We perform the simulation
for three different cases: T0 = 5.0 (hot), 1.0 (intermediate), and
0.3 (cold).

We summarize the conditions of the numerical simulation for
the above-mentioned two cases in Appendix G.

2. Results
Figure 2 shows the time profiles of Eqst(t) and the cal-

culated Pqst
A (t) in the isothermal case [T(t) = 0.3]. As Eqst(t)

increases, Pqst
A (t) also increases because of the conjugate relation-

ship ∂Gqst
A (t)/∂Eqst(t) = Pqst

A (t). In the classical case, as can be
seen from the steady-state solution of the Kramers Eq. (82), we
have Zcl

A = trA{exp [−β(t)ĤA(t)]} and, as in the conventional ther-
modynamics case, the results are independent of the SB coupling
strength. In the quantum case, however, Pqst

A (t) becomes smaller
with a smaller SB coupling strength. This difference arises from the
bathentanglement, which is described by the low-temperature cor-
rection term in the LT-QFPE (also see Refs. 77 and 78). However,
as the SB coupling becomes stronger, the system approaches the
Smoluchowski limit, where motion is suppressed and the difference
from the classical result becomes smaller.57

The change in the Gibbs energy ΔGqst
A in the isothermal process

is evaluated from (W int
A )qst. Then, to examine the description of the

thermodynamic relation, we compute ΔHG
A = −T2∂(ΔGqst

A /T)/∂T
and ΔSG

A = −∂ΔGqst
A /∂T and compare these values to the separately

calculated values of ΔHqst
A (t) and ΔSqst

A (t) from Eqs. (18) and (58),
respectively. The results are presented in Table III, from which it can
be seen that Eqs. (E3) and (E5) are valid.

Figure 3 presents the time profiles of T(t) and the change
in entropy ΔSqst

A (t) as a function of t in the constant-external-
field case A = 1.0. Because Sqst

A (t) satisfies the conjugate relation

FIG. 2. (a) Time profiles of Eqst
(t) for (i) equilibrium, (ii) quasi-static, and (iii) equi-

librium steps. (b) Calculated values of PA(t) in the classical case (dashed line)
and the quantum case (solid line) for different SB coupling strengths. The red,
green, and blue curves represent the strong (A = 1.5), intermediate (A = 1.0),
and weak (A = 0.5) SB interaction cases, respectively. The classical results are
independent of the SB bond strength, and all overlap.

TABLE III. Enthalpy and entropy changes and temperature derivative of the Gibbs
energy for each interaction strength A. Here, ΔHG

A and ΔSG
A are calculated from

Eqs. (E3) and (E5), respectively. The results in this table indicate that the relation
ΔGqst

A = ΔHG
A + TqstΔSG

A is satisfied.

A ΔHqst
A ΔHG

A ΔSqst
A ΔSG

A ΔGqst
A

0.5 −0.170 −0.170 −7.63 × 10−2 −7.62 × 10−2 −0.147
1.0 −0.181 −0.180 −9.81 × 10−2 −9.50 × 10−2 −0.152
1.5 −0.192 −0.192 −0.117 −0.116 −0.157

∂Gqst
A (t)/∂Tqst(t) = −Sqst

A (t), the variation of Sqst
A (t) in time is sim-

ilar to that of Pqst
A (t), while Sqst

A (t) does not increase linearly with
t because the role of T(t) in Gqst

A (t) is completely different from
E(t). At low temperatures, quantum bathentanglement becomes
important, and the differences between classical and quantum
results are pronounced. At high and intermediate temperatures T0
= 5.0 and 1.0, on the other hand, the contribution from the Mat-
subara frequency terms becomes smaller, and so the quantum result
almost overlaps with the classical result.
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FIG. 3. (a) Time profiles of βqst
(t) for (i) equilibrium, (ii) quasi-static, and (iii) equi-

librium steps. (b) Time profile of Sqst
A (t) for different temperatures in the classical

case (dashed line) and the quantum case (solid line) for different SB coupling
strengths. The red, green, and blue curves represent the cases of high (T0 = 5.0),
intermediate (T0 = 1.0), and low (T0 = 0.3) bath temperatures, respectively.
The classical and quantum results approach each other at higher temperatures
and almost overlap for the intermediate- and high-temperature cases.

VI. CONCLUSIONS
The virtue of thermodynamics lies in its ability to describe

macroscopic thermal phenomena resulting from complex micro-
scopic interactions in a system-independent manner as changes
in thermodynamic potentials, which are described as interrelated
intensive and extensive variables using Legendre transformations.
This virtue should be preserved when we develop a quantum ther-
modynamic theory rather than an open quantum dynamical theory,
although in either case, the theory must be specific to the SB model.
Moreover, as a first-principles argument based on the SB model,
the thermodynamic laws themselves should be derived within the
framework of open quantum dynamical theory. Thus, in the present
study, we have demonstrated the following:

1. A model consisting of multiple heat baths at different tem-
peratures (thermodynamic SB model) has been introduced to
describe the thermostatic process. Work and heat have then
been defined as the expectation values of the Hamiltonian
system.

2. Extensive variables, such as polarization and enthalpy, have
been defined as physical variables that can describe not only
equilibrium but also non-equilibrium processes.

3. Dimensionless (or entropic) work and heat satisfy the time-
dependent (non-equilibrium) Legendre transformations as
extensive variables and their conjugate intensive variables.

4. We evaluate the Massieu and Planck potentials using the mini-
mum value of the dimensionless extensive and intensive work,
respectively, and we evaluate the Boltzmann entropy using the
maximum value of the dimensionless heat (the principles of
dimensionless minimum work and dimensionless maximum
entropy). Expressions for the entropic potentials in total dif-
ferential form as functions of natural variables are presented
in Table I.

5. These principles are a consequence of the fact that the num-
ber of energy states (thermodynamic weights) is maximized
(or entropy is maximized) when the distribution of states
becomes a canonical ensemble for the energy given at that
instant, even if the energy of the subsystem changes with time
due to temperature changes in the heat bath.

6. The Gibbs and Helmholtz energies, enthalpy, and internal
energy can be evaluated from entropic potentials. The expres-
sions for these functions in total differential form as functions
of natural variables are presented in Table II.

7. The first and second laws of thermodynamics also follow
naturally from these arguments.

8. Numerically accurate simulations in both classical and quan-
tum cases have been performed using the reduced equations
of motion developed for the thermodynamic SB model.

9. The differences between the classical and quantum results can
be attributed to quantum entanglement between the system
and bath (i.e., bathentanglement).

The above-mentioned statements indicate that the model and
formalism introduced in the present study are powerful means
for accurate simulation and analysis of thermodynamic problems
in both classical and quantum regimes. If the limitations due to
computational cost can be removed, it will be possible to investi-
gate the thermodynamic properties of any system as a subsystem,
such as molecular liquids and proteins, using the Langevin formal-
ism as classical examples,79 and spin-lattice62 and superconductor
systems.63

Finally, using the present model, the definitions of non-
equilibrium intensive and extensive variables, and the reduced equa-
tions of motion, it is possible to study thermodynamic processes in
a fully non-equilibrium regime. Thus, we will show in a subsequent
paper that the thermodynamic relationships presented in Tables I
and II can be systematically extended to the non-equilibrium regime
in terms of the time-dependent intensive variables E(t) and T(t)
and extensive variables PA(t) and SA(t) by introducing waste heat.80
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APPENDIX A: DIMENSIONLESS MINIMUM WORK
PRINCIPLE

To obtain the dimensionless minimum work principle for
multiple-bath systems, the derivation of the Jarzynski equality is
modified.29,81

We assume that the subsystem is initially connected only to
the first bath (k = 1), and the total density operator at time t0 is
expressed as

ρ̂init
tot =

1
Zinit

tot
e−

ˆ̃H tot(t0), (A1)

where ˆ̃Htot(t) is defined in Eq. (34) and Zinit
tot is the total partition

function expressed as

Zinit
tot (t0) = Z1

A+ IB(t0)
N

∏
k=2

Zk
B, (A2)

with

Zk
A+ IB(t) = trA+ IBk{e−βk(Ĥ A(t)+Ĥ k

I+B(t))} (A3)

and

Zk
B = trBk{e−βkĤ k

B}. (A4)

Under the assumption that only the Nth bath as being connected to
the subsystem at a time t, the partition function of the final state is
given by

Zfin
tot = ZN

A+ IB(t)
N−1

∏
k=1

Zk
B. (A5)

The time evolution of the total system from t0 to t is described by the
operator Ĝ(t, t0). We then have

ZA(t)
ZA(t0)

= trtot{ Ĝ†
tot(t, t0)e−

ˆ̃H tot(t) Ĝtot(t, t0)e
ˆ̃H tot(t0)ρ̂init

tot }, (A6)

where ZA(t) = Zk
A+ IB/Zk

B [for ξk(t) ≠ 0] is the partition function of
the subsystem.

Let ∣D̃i⟩ and ∣Ẽ j⟩ be the eigenkets of the operators ˆ̃Htot(t0) and
ˆ̃Htot(t). The right-hand side of Eq. (A6) is then expressed as

∑
i,j

e−(Ẽ j−D̃ i)∣⟨Ẽj ∣ Ĝtot(t, t0)∣D̃i⟩∣2p(D̃i), (A7)

where p(D̃i) = ⟨D̃i∣ exp (− ˆ̃Htot(t0))∣D̃i⟩/Zinit
tot is the population of the

ith state. Applying Jensen’s inequality to Eq. (A7), we obtain

e−⟨
ˆ̃H tot(t)⟩

e−⟨
ˆ̃H tot(t0)⟩

≤ ZA(t)
ZA(t0)

. (A8)

Taking the logarithm of both sides of Eq. (A8), we have the
inequality,

∫
t

t0

∂

∂t′
trtot{ ˆ̃Htot(t′)ρ̂tot(t′)}dt′ ≥ −ΔΞA, (A9)

where ΞA(t) = ln ZA(t) is the Planck potential.
When the kth bath is connected to and disconnected from the

subsystem, we have

trtot{[ĤA(t) + ĤI+B(t)]
∂ρ̂tot(t)

∂t
} = 0 (A10)

and

trtot{Ĥk
B
∂ρ̂tot(t)

∂t
} = 0. (A11)

Thus, the left-hand side of Eq. (A9) reduces to

∫
t

t0

trtot

⎧⎪⎪⎨⎪⎪⎩

∂ ˆ̃Htot(t′)
∂t′

ρ̂tot(t′)
⎫⎪⎪⎬⎪⎪⎭

dt′. (A12)

In the case where the work due to the SB interaction is incorpo-
rated into the system, we thus obtain the dimensionless (or entropic)
minimum work principle expressed as

∫
t

t0

trA{
∂

∂t′
[β(t′)ĤA(t′)]ρ̂A(t′)} ≥ −ΔΞA. (A13)

APPENDIX B: EQUALITY OF THE MINIMUM
WORK PRINCIPLE

In this appendix, we consider only the quasi-static case
and omit the superscript k in Eqs. (5)–(7). When J(ω) is
Ohmic, the spectral density is invariant under the transformation
ĤI+B → aĤI+B with mj → mj/a, ωj → aωj, and cj → acj, where a > 0
is a dimensionless scaling parameter.

Because the dynamics of the subsystem depend only on tem-
perature, J(ω), ĤA(t), and ρ̂A(t) in the quasi-static process are
independent of the choice of a. Therefore, we can set the parameter
a = β0/β(t) for later convenience without loss of generality, where
β0 > 0 is the arbitrary inverse temperature.
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Using Kubo’s identity, we have29

e−β(t+Δt)Ĥ tot(t+Δt) − e−β(t)Ĥ tot(t)

= −∫
1

0
dλe−(1−λ)β(t)Ĥ tot(t)

× {β(t + Δt)Ĥtot(t + Δt) − β(t)Ĥtot(t)}

× e−λβ(t+Δt)Ĥ tot(t+Δt). (B1)

Expanding Eq. (B1) in Δt and taking the limit Δt → 0, we obtain

∂

∂t
e−β(t)Ĥ tot(t) = −∫

1

0
dλe−(1−λ)β(t)Ĥ tot(t)

× ∂

∂t
[β(t)ĤA(t)]e−λβ(t)Ĥ tot(t). (B2)

Here, we have employed the equality,

∂

∂t
[β(t)Ĥtot(t)] =

∂

∂t
[β(t)ĤA(t)], (B3)

using the fact that β(t)ĤI+B(t) is time-independent because the
time-dependent terms in β(t) and ĤI+B(t) cancel out. Taking the
trace of the total system on both sides of Eq. (B2), we obtain

∂

∂t
ZA(t) = −trtot

⎧⎪⎪⎨⎪⎪⎩

∂

∂t
[β(t)ĤA(t)]

e−β(t)Ĥ tot(t)

ZB

⎫⎪⎪⎬⎪⎪⎭
, (B4)

where ZA(t) = trtot{e−β(t)Ĥ tot(t)}/ZB is the partition function of the
subsystem and ZB = trB{e−β(t)Ĥ B(t)} is the bath partition function,
which is time-independent. Dividing both sides of Eq. (B4) by ZA(t),
we obtain the equality,

∂

∂t
[β(t)GA(t)] = trA{

∂

∂t
[β(t)ĤA(t)]ρ̂qst

A (t)}, (B5)

where we have introduced the quasi-static Gibbs energy GA(t)
= −ln ZA(t)/β(t) and the reduced density operator in the quasi-
static process ρ̂qst

A (t). Solving Eq. (B5) for dGA(t)/dt, we obtain

dGqst
A (t)
dt

= − trA{ĤA(t)ρ̂qst
A (t)} −Gqst

A (t)
Tqst(t)

dTqst(t)
dt

+ trA{μ(q̂)ρ̂qst
A (t)}

dEqst(t)
dt

. (B6)

By comparing Eq. (B6) with dGqst
A = −Sqst

A dTqst + Pqst
A dEqst, the

entropy and polarization are evaluated in terms of the partition
function as

Sqst
A (t) = kB[βqst(t)trA{ĤA(t)ρ̂qst

A (t)} − ln ZA(t)] (B7)

and

Pqst
A (t) = trA{μ(q̂)ρ̂qst

A (t)}. (B8)

APPENDIX C: CONVEXITY AND CONCAVITY
OF THERMODYNAMIC FUNCTIONS

We show the convexity of the Planck potential for βqst(t). For a
fixed external field E(t) = Efix, consider the two equilibrium states

FIG. 4. Schematic illustration of the convexity of Ξqst
A . The blue curve represents

the Planck potential as a function of the inverse temperature β for fixed E = Efix.
The red line represents the tangent line of the blue curve at the inverse tempera-
ture β1, expressed as (Ξqst

A )1 − (H
qst
A )1(β − β1). The red line is below the blue

curve.

α = 1 at time t1 and α = 2 at time t2. Under this condition, the
dimensionless minimum work principle is expressed as

− ∫
t2

t1

HA(t′)
dβ(t′)

dt′
dt′ ≤ (Ξqst

A )2
− (Ξqst

A )1
, (C1)

where (Ξqst
A )α is the Planck potential for α = 1 or 2. We then apply

the inequality (C1) for the thermostatic process as follows:

β(t) =
⎧⎪⎪⎨⎪⎪⎩

β1 (t ≤ t1),
β2 (t > t1).

(C2)

The left-hand side of Eq. (C1) can be evaluated as −HA(t1)(β2 − β1).
Because the system is in equilibrium at t1, the enthalpy is expressed
in terms of its equilibrium value as HA(t1) = (Hqst

A )1. Using Hqst
A (t)

= −∂Ξqst
A (t)/∂βqst(t) for Eq. (C1), we obtain

(Ξqst
A )1
+ ∂Ξqst

A [β, Efix]
∂β

∣
β=β1

(β2 − β1) ≤ (Ξqst
A )2

. (C3)

As shown in Fig. 4, the left-hand side of Eq. (C3) corresponds to the
tangent line of the Planck potential. The inverse temperature β1 and
β2 are arbitrary, indicating that the Planck potential is convex with
respect to βqst(t).

In the same manner and from the property of the Legendre
transformation, we can show the convexity and concavity of the
dimensionless entropic potentials. We summarize the results in
Table IV.

TABLE IV. Convexity and concavity of the entropic potentials for the natural variables.

Potential Symbol Convexity and concavity

Massieu Φqst
A βqst: convex P̃qst

A : concave
Planck Ξqst

A βqst: convex Eqst: convex
B-entropy Θqst

A Hqst
A : concave Eqst: convex

C-entropy Πqst
A Hqst

A : concave P̃qst
A : concave
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APPENDIX D: INTERNAL ENERGY REPRESENTATION

For the description of the entropic potentials, here we employ
the internal energy instead of the enthalpy. From Table I, we have

dΞqst
A = −Hqst

A dβqst + P̃qst
A dEqst. (D1)

Substituting Eq. (22) into this, the Planck potential is expressed as

dΞqst
A (t) = −Uqst

A (t)dβqst(t) + Pqst
A (t)dẼ qst(t), (D2)

where Ẽ qst(t) = βqst(t)Eqst(t). Applying the Legendre transforma-
tion to this, we obtain the Massieu potential and B-entropy in the
internal energy representation as

dΦqst
A (t) = −Uqst

A (t)dβqst(t) − Ẽ qst(t)dPqst
A (t) (D3)

and

dΘqst
A (t) = βqst(t)dUqst

A (t) − Ẽ qst(t)dPqst
A (t), (D4)

where we have used Eqst(t)P̃qst
A (t) = Ẽ qst(t)Pqst

A (t) and βqst(t)
Hqst

A (t) = βqst(t)Uqst
A (t) − Ẽ qst(t)Pqst

A (t). In Eq. (D4), the B-entropy
is expressed in terms of extensive variables, while the value of
B-entropy is unchanged. However, in the internal energy representa-
tion, we cannot obtain the C-entropy from the Legendre transforma-
tion of the B-entropy, because the sign of the second term in Eq. (D4)
is opposite to that presented in Table I.

APPENDIX E: ENTHALPY AND GIBBS ENERGY
AS FUNCTIONS OF T qst(t ) AND S qst(t )

Here, we consider the fixed-external-field process [E(t) = Efix].
From the total differential form of the Planck potential presented in
Table I, we have

dΞqst
A (t)
dt

= −Hqst
A (t)

dβqst(t)
dt

. (E1)

Because the Gibbs energy is defined as Gqst
A (t) = −Ξqst

A (t)/β for arbi-
trary β, we can replace β with βqst(t). In this way, we can extend
this definition of the Gibbs energy to the thermostatic process. Then,
substituting Ξqst

A (t) = −βqst(t)Gqst
A (t) in Eq. (E1), we have

d
dt
[βqst(t)Gqst

A (t)] = Hqst
A (t)

dβqst(t)
dt

, (E2)

which leads to

Hqst
A (t) =

∂

∂βqst(t)
[βqst(t)Gqst

A (t)]. (E3)

Equation (E2) can then be rewritten as

dGA(t)
dt

= Ξqst
A (t) + βqst(t)Hqst

A (t)
(βqst(t))2

dβqst(t)
dt

, (E4)

and thus, we have

SA(t) = kB(βqst(t))2 ∂GA(t)
∂βqst(t) , (E5)

where we have applied the Legendre transformation in Eq. (60) to
the right-hand side of Eq. (E4).

APPENDIX F: CONCAVITY OF THE GIBBS ENERGY

Here, we prove the concavity of the Gibbs energy for Tqst(t) for
a fixed external field Eqst(t) = Efix. We then consider the transition
from equilibrium state 1 to another equilibrium state 2, as given in
Appendix C, where the inequality (C1) holds. For the thermostatic
process defined in Eq. (C2), we obtain the inequality expressed as

− (Hqst
A )1
(β2 − β1) ≤ (Ξqst

A )2
− (Ξqst

A )1
. (F1)

Then, using the equality (Hqst
A )1 = ((Θqst

A )1 − (Ξqst
A )1)/β1, which

we obtain from the Legendre transformation for the dimension-
less B-entropy in the quasi-static (equilibrium) state 1 (i.e., (Θqst

A )1

= β1(Hqst
A )1 + (Ξqst

A )1), we obtain

(Θqst
A )1
(β2

β1
− 1) ≤ (Ξqst

A )2
− β2

β1
(Ξqst

A )1
. (F2)

Dividing both sides of Eq. (F2) by −β2, we have the inequality for the
Gibbs energy as

− (Sqst
A )1
(T2 − T1) ≥ (Gqst

A )2
− (Gqst

A )1
, (F3)

where we have used the definitions of the quasi-static entropy
(Sqst

A )1 = kB(Θqst
A )1 and of the quasi-static Gibbs energy (Gqst

A )α

= −(Ξqst
A )α/βα (α = 1, 2). Because we have Eq. (71), Eq. (F3) leads

to the concavity of the Gibbs energy for the temperature.
We summarize the convexity and concavity of the thermody-

namic potentials in Table V.

APPENDIX G: NUMERICAL SIMULATION DETAILS

The numerical calculations in Sec. V B were carried out to
integrate Eq. (76) with Eqs. (77)–(81) in the quantum cases and

TABLE V. Convexity and concavity of the thermodynamic potentials for the natural
variables.

Potential Symbol Convexity and concavity

Helmholtz Fqst
A Tqst: concave P̃qst

A : convex
Gibbs Gqst

A Tqst: concave Eqst: concave
Internal energy Uqst

A Sqst
A : convex P̃qst

A : convex
Enthalpy Hqst

A Sqst
A : convex Eqst: concave

TABLE VI. Parameter values used for the simulations of the isothermal process.
Here, dx and dp are the mesh sizes for position and momentum, respectively, in the
Wigner space. The integers N and K are the cutoff numbers used in the LT-QFPE.

A N K dx dp

Classical
0.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.2 0.2
1.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.2 0.2
1.5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.2 0.2

Quantum
0.5 6 3 0.2 0.2
1.0 7 3 0.2 0.2
1.5 8 3 0.25 0.35
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TABLE VII. Parameter values used for the simulations of the thermostatic process.
Here, dx and dp are the mesh sizes for position and momentum, respectively, in the
Wigner space. The integers N and K are the cutoff numbers used in the LT-QFPE.

T0 N K dx dp

Classical
0.3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.2 0.2
1.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.25 0.25
5.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.3 0.4

Quantum
0.3 7 3 0.25 0.3
1.0 7 2 0.3 0.45
5.0 7 1 0.3 0.6

Eq. (82) with Eq. (83) in the classical cases, using a fourth-order
Runge–Kutta algorithm with the predictor–corrector method incor-
porated into the fourth-order Adams–Bashforth method and the
fourth-order Adams–Moulton method.82 We set the time step
δt = 0.001. Uniform meshes were employed to discretize the Wigner
function with mesh sizes of Nq = 64 and Np = 64 in the q and p
directions, respectively.

Other parameters for the isothermal and thermostatic processes
are listed in Tables VI and VII, respectively.
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